Validation of liquid chromatography mass spectrometry (LC-MS) methods
References
European Commission Decision 2002/657/EC implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, Off. J. Eur. Commun. L221 (2002) 8-36.
Note that this directive is superseded by Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling.
Harmonized Guidelines for single-laboratory validation of method of analyses (IUPAC Technical Report). M. Thompson, S.L.R. Ellison, R. Wood, Pure Appl. Chem. 2002, 74(5), 835–855.
Limits for qualitative detection and quantitative determination. L. A. Currie, Anal. Chem. 1968, 40, 586–593.
NordVal Protocol No. 2, Guide in validation of alternative proprietary chemical methods, 2010.
ICH harmonized tripartite guideline: validation of analytical procedures: text and methodology Q2(R1), International Conference of harmonization of technical requirements for registration of pharmaceuticals for human use 2005. A revised/renewed draft version of this guideline: ICH guideline Q2(R2) on validation of analytical procedures 2022.
ISO 11843-2:2000 Capability of detection - Part 2: Methodology in the linear calibration case, International Organization of Standardization 2000.
R. Rosen False Positives in LC-MS/MS: to what Extant Do We Have to Live with Them? Presented at IsrAnalytica, Tel Aviv, 2010.
P. Bastos-Amador, F. Royo, E. Gonzalez, J. Conde-Vancells, L. Palomo-Diez, F.E. Borras, J.M. Falcon-Perez, Proteomic analysis of microvesicles from plasma of healthy donors reveals high individual variability, J. Proteomics 2012, 75, 3574–3584.
P.J. Taylor “Matrix effects: The Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry” Clin Biochem 38 2005, 328-334.
S.J. Lehotay, K. Mastovska, A.R. Lightfield, R.A. Gates, Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables, J. AOAC Int. 93 (2010) 355–367.
I.R. Pizzutti, A. de Kok, M. Hiemstra, C. Wickert, O.D. Prestes, Method validation and comparison of acetonitrile and acetone extraction for the analysis of 169 pesticides in soya grain by liquid chromatography–tandem mass spectrometry, J. Chromatogr. A 1216 (2009) 4539–4552
A. Kruve, K. Herodes, I. Leito, Electrospray ionization matrix effect as an uncertainty source in HPLC/ESI-MS pesticide residue analysis, Rapid Commun. Mass Spectrom. 93 (1) (2010) 306–314.
R. Bonfiglio, R.C. King, T.V. Olah, K. Merkle, The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds, Rapid Commun. Mass Spectrom. 13 (1999) 1175–1185.
R. Dams, M.A. Huestis, W.E. Lambert, C.M. Murphy, Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: influence of ionization type, sample preparation, and biofluid, J. Am. Soc. Mass Spectrom. 14 (2003) 1290–1294.
P. Keski-Rahkonen, K. Huhtinen, R. Desai, D.T. Harwood, D.J. Handelsman, M. Poutanen, S. Auriola, LC–MS analysis of estradiol in human serum and endometrial tissue: comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, J. Mass Spectrom. 48 (2013) 1050–1058.
O.A. Ismaiel, M.S. Halquist, M.Y. Elmamly, A. Shalaby, H.T. Karnes, Monitoring phospholipids for assessment of ion enhancement and ion suppression in ESI and APCI LC/MS/MS for chlorpheniramine in human plasma and the importance of multiple source matrix effect evaluations, J. Chromatogr. B 875 (2008) 333–343.
E. Beltrán, M. Ibánez, J.V. Sancho, F. Hernández, Determination of patulin in apple and derived products by UHPLC-MS/MS. Study of matrix effects with atmospheric pressure ionisation sources, Food Chem. 142 (2014) 400–407.
E.M. Thurman, I. Ferrer, D. Barcelo, Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides, Anal. Chem. 73 (2001) 5441–5449.
Q. Sun, W. Zhang, W. Zhong, X. Sun, Z. Zhou, Pharmacological inhibition of NOX4 ameliorates alcohol-induced liver injury in mice through improving oxidative stress and mitochondrial function. Biochim Biophys Acta. 2016, 1861, 2912-2921.
V.M. Costa, R. Silva, L.M. Ferreira, P.S. Branco, F. Carvalho, M.L. Bastos, R.A. Carvalho, M. Carvalho, F. Remião, Oxidation process of adrenaline in freshly isolated rat cardiomyocytes: formation of adrenochrome, quinoproteins, and GSH adduct. Chem Res Toxicol. 2007, 20, 1183-1191.
R.K. Palsmeier, D.M. Radzik, C.E. Lunte. Investigation of the degradation mechanism of 5-aminosalicylic acid in aqueous solution. Pharm Res. 1992, 9, 933-938.
P.G. Geiger, W. Korytowski, F. Lin, A.W. Girotti, Lipid Peroxidation in Photodynamically Stressed Mammalian Cells: Use of Cholesterol Hydroperoxides as Mechanistic Reporters. Free Radic Biol Med. 1997, 23, 57-68.
A. Beuve, Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor. Antioxid Redox Signal. 2016 Apr 1.
J.V. Voorde, S. Sabuncuoğlu, S. Noppen, A. Hofer, F. Ranjbarian, S. Fieuws, J. Balzarini, S. Liekens, Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem. 2014, 289, 13054-13065.
M.M. Musa, R.S. Phillips, M. Laivenieks, C. Vieille, M. Takahashi, S.M. Hamdan, Racemization of enantiopure secondary alcohols by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase. Org Biomol Chem. 2013, 11, 2911-2915.
R.J. Guan, Y. Xiang, X.L. He, C.G. Wang, M. Wang, Y. Zhang, E.J. Sundberg, D.C. Wang, Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins. J Mol Biol. 2004, 341, 1189-1204.
S. Feng, M.A. ElSohly, D.T. Duckworth, Hydrolysis of conjugated metabolites of buprenorphine. I. The quantitative enzymatic hydrolysis of buprenorphine-3-beta-D-glucuronide in human urine. J Anal Toxicol. 2001, 25, 589-593.
M. Caswell, G.L. Schmir, Formation and hydrolysis of lactones of phenolic acids. J. Am. Chem. Soc., 1980, 102, 4815–4821.
Y. Yang, H. Aloysius, D. Inoyama, Y. Chen, L. Hu. Enzyme-mediated hydrolytic activation of prodrugs. Acta Pharm. Sin. B. 2011, 1, 143–159.
X. Yan, J. Wang, Y. Sun, J. Zhu, S. Wu. Facilitating the evolution of Esterase Activity from a Promiscuous Enzyme Mhg with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel. Appl Environ Microbiol. 2016. doi: 10.1128/AEM.01817-16
H. Sun, F. Wang, L. Ai, C. Guo, R. Chen, Validated method for determination of eight banned nitroimidazole residues in natural casings by LC/MS/MS with solid-phase extraction, J. AOAC Int. 2009, 92, 612–621.
R.P. Lopes, D.V. Augusti, L.F. de Souza, F.A. Santos, J.A. Lima, E.A. Vargas, R. Augusti, Development and validation (according to the 2002/657/EC regulation) of a method to quantify sulfonamides in porcine liver by fast partition at very low temperature and LC–MS/MS, Anal. Methods, 2011, 3 606–613.
A. Menditto, M. Patriarca, B. Magnusson, Understanding the meaning of accuracy, trueness and precision. Accred Qual Assur, 2007, 12, 1, 45. doi:10.1007/s00769-006-0191-z