MOOC: Validation of liquid chromatography mass spectrometry (LC-MS) methods (analytical chemistry) course

References

All | R
ref 12

Harmonized Guidelines for single-laboratory validation of method of analyses (IUPAC Technical Report). M. Thompson, S.L.R. Ellison, R. Wood, Pure Appl. Chem. 2002, 74(5), 835–855.

    ref 14

    Limits for qualitative detection and quantitative determination. L. A. Currie, Anal. Chem. 1968, 40, 586–593.

      ref 15

      NordVal Protocol No. 2, Guide in validation of alternative proprietary chemical methods, 2010.

        ref 18

        ISO 11843-2:2000 Capability of detection - Part 2: Methodology in the linear calibration case, International Organization of Standardization 2000.

          ref 23

          R. Rosen False Positives in LC-MS/MS: to what Extant Do We Have to Live with Them? Presented at IsrAnalytica, Tel Aviv, 2010.

            ref 24

            P. Bastos-Amador, F. Royo, E. Gonzalez, J. Conde-Vancells, L. Palomo-Diez, F.E. Borras, J.M. Falcon-Perez, Proteomic analysis of microvesicles from plasma of healthy donors reveals high individual variability, J. Proteomics 2012, 75, 3574–3584.

              ref 25

              P.J. Taylor “Matrix effects: The Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry” Clin Biochem 38 2005, 328-334.

                ref 26

                S.J. Lehotay, K. Mastovska, A.R. Lightfield, R.A. Gates, Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables, J. AOAC Int. 93 (2010) 355–367.

                ref 28

                I.R. Pizzutti, A. de Kok, M. Hiemstra, C. Wickert, O.D. Prestes, Method validation and comparison of acetonitrile and acetone extraction for the analysis of 169 pesticides in soya grain by liquid chromatography–tandem mass spectrometry, J. Chromatogr. A 1216 (2009) 4539–4552

                ref 29

                A. Kruve, K. Herodes, I. Leito, Electrospray ionization matrix effect as an uncertainty source in HPLC/ESI-MS pesticide residue analysis, Rapid Commun. Mass Spectrom. 93 (1) (2010) 306–314.

                ref 30

                R. Bonfiglio, R.C. King, T.V. Olah, K. Merkle, The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds, Rapid Commun. Mass Spectrom. 13 (1999) 1175–1185.

                ref 31

                R. Dams, M.A. Huestis, W.E. Lambert, C.M. Murphy, Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: influence of ionization type, sample preparation, and biofluid, J. Am. Soc. Mass Spectrom. 14 (2003) 1290–1294.

                ref 32

                P. Keski-Rahkonen, K. Huhtinen, R. Desai, D.T. Harwood, D.J. Handelsman, M. Poutanen, S. Auriola, LC–MS analysis of estradiol in human serum and endometrial tissue: comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, J. Mass Spectrom. 48 (2013) 1050–1058.

                ref 33

                O.A. Ismaiel, M.S. Halquist, M.Y. Elmamly, A. Shalaby, H.T. Karnes, Monitoring phospholipids for assessment of ion enhancement and ion suppression in ESI and APCI LC/MS/MS for chlorpheniramine in human plasma and the importance of multiple source matrix effect evaluations, J. Chromatogr. B 875 (2008) 333–343.

                ref 34

                E. Beltrán, M. Ibánez, J.V. Sancho, F. Hernández, Determination of patulin in apple and derived products by UHPLC-MS/MS. Study of matrix effects with atmospheric pressure ionisation sources, Food Chem. 142 (2014) 400–407.

                ref 35

                E.M. Thurman, I. Ferrer, D. Barcelo, Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides, Anal. Chem. 73 (2001) 5441–5449.

                ref 40

                Q. Sun, W. Zhang, W. Zhong, X. Sun, Z. Zhou, Pharmacological inhibition of NOX4 ameliorates alcohol-induced liver injury in mice through improving oxidative stress and mitochondrial function.  Biochim Biophys Acta. 2016, 1861, 2912-2921.

                  ref 41

                  V.M. Costa, R. Silva, L.M. Ferreira, P.S. Branco, F. Carvalho, M.L. Bastos, R.A. Carvalho, M. Carvalho, F. Remião, Oxidation process of adrenaline in freshly isolated rat cardiomyocytes: formation of adrenochrome, quinoproteins, and GSH adduct. Chem Res Toxicol. 2007, 20, 1183-1191.

                  ref 42

                  R.K. Palsmeier, D.M. Radzik, C.E. Lunte. Investigation of the degradation mechanism of 5-aminosalicylic acid in aqueous solution. Pharm Res. 1992, 9, 933-938.

                  ref 43

                  P.G. Geiger, W. Korytowski, F. Lin, A.W. Girotti, Lipid Peroxidation in Photodynamically Stressed Mammalian Cells: Use of Cholesterol Hydroperoxides as Mechanistic Reporters. Free Radic Biol Med. 1997, 23, 57-68.

                  ref 44

                  A. Beuve, Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor. Antioxid Redox Signal. 2016 Apr 1.

                  ref 45

                  J.V. Voorde, S. Sabuncuoğlu, S. Noppen, A. Hofer, F. Ranjbarian, S. Fieuws, J. Balzarini, S. Liekens, Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem. 2014, 289, 13054-13065.

                  ref 46

                  M.M. Musa, R.S. Phillips, M. Laivenieks, C. Vieille, M. Takahashi, S.M. Hamdan, Racemization of enantiopure secondary alcohols by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase. Org Biomol Chem. 2013, 11, 2911-2915.

                  ref 47

                  R.J. Guan, Y. Xiang, X.L. He, C.G. Wang, M. Wang, Y. Zhang, E.J. Sundberg, D.C. Wang, Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins. J Mol Biol. 2004, 341, 1189-1204.

                  ref 48

                  S. Feng, M.A. ElSohly, D.T. Duckworth, Hydrolysis of conjugated metabolites of buprenorphine. I. The quantitative enzymatic hydrolysis of buprenorphine-3-beta-D-glucuronide in human urine. J Anal Toxicol. 2001, 25, 589-593.

                  ref 49

                  M. Caswell, G.L. Schmir, Formation and hydrolysis of lactones of phenolic acids. J. Am. Chem. Soc., 1980, 102, 4815–4821.

                  ref 50

                  Y. Yang, H. Aloysius, D. Inoyama, Y. Chen, L. Hu. Enzyme-mediated hydrolytic activation of prodrugs. Acta Pharm. Sin. B.  2011, 1, 143–159.

                  ref 51

                  X. Yan, J. Wang, Y. Sun, J. Zhu, S. Wu. Facilitating the evolution of Esterase Activity from a Promiscuous Enzyme Mhg with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel. Appl Environ Microbiol. 2016. doi: 10.1128/AEM.01817-16

                  ref 53

                  H. Sun, F. Wang, L. Ai, C. Guo, R. Chen, Validated method for determination of eight banned nitroimidazole residues in natural casings by LC/MS/MS with solid-phase extraction, J. AOAC Int. 2009, 92, 612–621. 

                  ref 54

                  R.P. Lopes, D.V. Augusti, L.F. de Souza, F.A. Santos, J.A. Lima, E.A. Vargas, R. Augusti, Development and validation (according to the 2002/657/EC regulation) of a method to quantify sulfonamides in porcine liver by fast partition at very low temperature and LC–MS/MS, Anal. Methods2011, 3 606–613.

                  ref 56

                  A. Menditto, M. Patriarca, B. Magnusson, Understanding the meaning of accuracy, trueness and precision. Accred Qual Assur2007, 12, 1, 45. doi:10.1007/s00769-006-0191-z

                  ref 68

                  Process Optimization: A Statistical Approach, By Enrique Del Castillo 2007, Volume 105 ISBN : 978-0-387-71434-9