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Cosmic Web – Formation & Dynamics

• Forces & Strains - Observational Manifestations

• the Mechanism - Gravitational Instability

• Anisotropic Collapse - Formation of filaments and walls

• Weaving the Web             - Connection Clusters, Filaments and Walls

• Dynamical Inventory        - Forces  & Tides in the Cosmic Web

• Phase Space Dynamics   - Phase Space  &  Multistream structure

• Lagrangian Dynamics      - Zeldovich formalism

• Hierarchical Formation - from small to the Megaparsec Cosmic Web

• Anisotropy & Hierarchy - the Adhesion formalism

• Caustic Skeleton - analytical formalism cosmic web







Lagrangian - Eulerian
1st order Lagrangian perturbation theory
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Simulation – Discrete Particles



Simulation – Mass Elements





Phase Space 
Evolution

Dark Matter Phase Space sheet:

3-D structure projection of a 
folding DM phase space sheet 
In 6-D phase space 

- Shandarin              2010, 2011
- Neyrinck et al.        2011, 2012

Origami
- Abel et al.              2011

Evolving matter distribution in 
position-velocity space – 1D



Phase Space Evolution
Phase space:

Velocity   vs.   Position 

Density:
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Phase-Space Sheet  
                   Cosmic Web

phase-space wrapping

Dynamical Evolution:

folding the 
phase-space sheet  {q,x}

Lagrangian
coordinate

Eulerian plane

Hidding 2014 
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Cosmic Web Multistreaming
Translation towards 
2D space:

Evolution
Multistream region:

- Eulerian space

- Lagrangian space
(mass elements)

Shandarin 2012
Abel, Hahn & Kaehler 2012
Falck, Neyrinck et al. 2012
Feldbrugge, Wilding, vdW 2022



Cosmic Web FlipFlop field
Translation towards 
3D space:

Density of 
dark matter streams:

- # phase space folds

=

# changing orientation
tetrahedra

Shandarin 2012
Feldbrugge et al. 2022b 
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Cosmic Web FlipFlop field
Translation towards 
3D space:

Density of 
dark matter streams:

- # phase space folds

=

# changing orientation
tetrahedra

Shandarin 2012
Feldbrugge et al. 2022b 



Tessellation Deformation
& Phase Space Projection

Translation towards 
Multi-D space:

- Look at deformation
of initial tessellation

- each tessellation cell 
represents matter cell

- evolution deforms cell

- once cells start to
overlap, manifestation 
of different phase-space
matter streams

particle 
displacement

fluid element 
deformation



Tessellation Deformation
& Phase Space Projection

Translation towards 
Multi-D space:

- Look at deformation
of initial tessellation

- each tessellation cell 
represents matter cell

- evolution deforms cell

t=t0

t=t1
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Conservation of mass 
(continuity eqn.):
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Monostream 
Density Evolution



(Cosmic)  ORIGAMI

Mark Neyrinck, Bridget Falck

mono stream

multi stream

Evolution of dynamical system:
Phase-space folding – Cosmic Origami

( )!
" !

"

# $ % $!
"#"$% !

! !

&' " ( "
&

ρ ρ=∑! !



Multistream 
Density Estimates



Cosmic Web Stream Density
Translation towards 
Multi-D space:

Density of 
dark matter streams:

- # phase space folds

=

# locally overlapping  
tessellation cells

Shandarin 2012
Abel, Hahn & Kaehler 2012
Falck, Neyrinck et al. 2012 





Yakov Borisovich Zel’dovich



Zel’dovich Approximation
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linear growth factor  D

linear growth rate f



Zel’dovich Approximation
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Zel’dovich Approximation
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Zel’dovich Approximation:
Deformation
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Zeldovich Formalism:

Singularities

velocity
density

Lagrangian coordinate
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Zel’dovich Morphology
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Structure of the cosmic web determined by the 
spatial field of eigenvalues: 
Sequence of formation stages:

λ1 -    collapse along first axis:
           formation of walls/sheets/pancakes

λ2 -     collapse along 2 axes:
           formation of elongated filaments

λ3 -      possibly – if λ3>0 – collapse along all 
            three axes, into a fully collapsed clump/node

Job Feldbrugge 2018



Zel’dovich Cosmic Web
It is no exaggeration to
state that Zeldovich (1970)
predicted the existence
of the Cosmic Web ! 

Sequence of formation stages:

λ1 -    collapse along first axis:
           formation of walls/sheets/pancakes

λ2 -     collapse along 2 axes:
           formation of elongated filaments

λ3 -      possibly – if λ3>0 – collapse along 
            all three axes, 
            into a fully collapsed clump/node

Job Feldbrugge 2018



Yakov Borisovich Zel’dovich



Zel’dovich Dynamics
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1st order Lagrangian perturbation theory
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Zel’dovich Dynamics



Zeldovich Dynamics

By rewriting the Euler equation (in comoving coordinates), we may easily understand
dynamical nature of the Zeldovich approximation:  

Define velocity u,
wrt linear growth factor D(t):
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With velocity potential ϕv: 

and effective potential V:

and scaled
gravitational potential θ:

Zeldovich Dynamics
Following some algebraic manipulations, one arrives at the equivalent Euler equation for the
normalized velocity u:  
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For the Zeldovich approximation: 

with:

so that the scaled
gravitational potential θ:

Effective & Scaled Potentials
For the Zeldovich approximation we may easily see that the effective potential V=0:  
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The velocity potential ϕv we may infer from the velocity 
corresponding to the Zeldovich approximation:

from which we see that  

( ) ( )

( ) ( ) ( )!

! "# "$% & D

! "$%( & D D
"$ "$

φ

= = − Ω ∇Ψ

=∇ = = − Ω ∇Ψ = −∇Ψ

!! ! !
"

!
! ! !! ! !

" "

( )! "φ = −Ψ
!

! !! "φ θ+ = ⇒ =Hence, for the Zeldovich approximation:  





Zeldovich-Adhesion
We saw that dynamically, the Zeldovich approximation corresponds to a force-free propagation, 
as evidenced by the Euler equation for the normalized velocity u:  
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The force-free  nature of the Zeldovich approximation leads to the ballistic motion, 
which once a mass element enters a multi-stream nonlinear region ignores the dominant 
self-gravitational terms, ie. the evolving gravitational potential of high-density structures
(such as walls, filaments and clumps). 

The adhesion approximation augments this with a (really) artificial term – a non-gravitational
term – in terms of a viscosity term (as we know from the Navier-Stokes equation):
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Zeldovich-Adhesion
The force-free  nature of the Zeldovich approximation leads to the ballistic motion, 
which once a mass element enters a multi-stream nonlinear region ignores the dominant 
self-gravitational terms, ie. the evolving gravitational potential of high-density structures
(such as walls, filaments and clumps). 

The adhesion approximation augments this with a (really) artificial term – a non-gravitational
term – in terms of a viscosity term (as we know from the Navier-Stokes equation):

This equation, the Navier-Stokes equation for a pressureless medium, goes by the name of 

Burger’s Equation
after the famous hydrodynamicist. It is one of the few equations that can be fully solved
analytically. 

The viscosity term here is fully artificial, tries to emulate “selfgravity”, and has nothing to 
do with the physical viscosity we know from hydrodynamics. Basically, it functions as a 
friction term. 

In its cosmological context, you only want to invoke it close to the emerging multistream 
regions, so that you take the asymptotic “inviscid” limit,  
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Adhesion Approximation

Hidding 2012

Gurbatov, Saichev & Shandarin 1987



Burger’s Equation: Hopf Solution
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Burger’s Equation: Hopf Solution



Convex Hull
quadratically lifted potential field

Delaunay tessellation
generated by maxima potential field

Hidding 2012/2014



Convex Hull
Delaunay-Voronoi: Legendre transform

Delaunay

(weighted)

Voronoi

(weighted)
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Eulerian vs. Lagrangian 
weblike geometry

wall filament cluster node

Hidding, vdW et al. 

Eulerian

Lagrangian

Source
regions



sEulerian – Lagrangian
Voronoi - Delaunay



Eulerian – Lagrangian
Voronoi - Delaunay



Lagrangian – Eulerian Cosmic Web

Delaunay- Voronoi Tessellations
Lagrangian

Delaunay
Tessellation

Hidding, vdW et al. 

Eulerian

Voronoi
Tessellation



Hierarachical Evolution
The adhesion formalism
is ideal for following the
hierarchical buildup of the
cosmic web:

• Mathematically:
as a result of the evolving
parabolic curvature of the
(velocity) potential, more    
features get embedded in    
singular valleys enclosed
between potential and
convex hull.

•  Physically:
- Clearly visible is the

merging of small filaments
into ever larger arteries.

- at the same time, we see
the continuous merging of 
small voids into larger voids, 
the evolving soapsud of 
void hierarchy. 



Multiscale Structure 



Cosmological Sensitivity Cosmic Web

the morphology of the weblike network is 
highly sensitive to the underlying cosmology

P(k) ~ k-2.0P(k) ~ k-1.5 Hidding 2012/2014























Cosmic Web – Phase Space Folding

Hidding 2014 



In Lagrangian space  (coordinates q):
                                             
A singularity forms in a manifold M at 
location qs when at qs,

- the deformation tensor eigenvalue
- the corresponding eigenvector  

when at least one nonzero tangent vector        

Caustic Skeleton & Phase-Space Wrapping  
                   Classification phase-space folding –

Structural Morphology

Feldbrugge, vdW et al., JCAP,  2018
Hidding, Shandarin, vdW, MNRAS, 2014
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Cosmic Catastrophe Theory: 

Lagrangian catastrophe/caustic
classification V. Arnold                 
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DYNAMICS

Cosmic Web
phase-space wrapping

Hidding 2014



Phase Space Dynamics & Tracks

Wilding 2022



Deformation, Streaming & Caustics

Hidding 2013

Illustration of the formation of caustics due to 
streaming paths of light through deforming medium



Skeleton (3D) Cosmic Web:
A4 spine - swallowtails

Feldbrugge, vdW et al. 2017b


