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Course 1. Introduction: course organisation, data sets and

examples
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Laporte-Chabasse, A. Lejay, N. Libeskind, M. N. M. van Liehsout,
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Examples: data sets, application domains and related

questions
Forestry data (1): the points positions exhibit attraction →
clustered distribution

redwoodfull

Figure: Redwoodfull data from the spatstat package

> library(spatstat)

> data(redwoodfull) ; plot(redwoodfull)



Forestry data (2): the points positions exhibit neither attraction
nor repulsion → completely random distribution

japanesepines

Figure: Japanese data from the spatstat package

In order to see all the available data sets
> data(package="spatstat")



Biological data (1): the points positions exhibit repulsion →
regular distribution

cells

Figure: Cell data from the spatstat package

> data(cells)

> cells

planar point pattern: 42 points

window: rectangle = [0, 1] x [0, 1] units



Biological data (2): two types of cells exhibiting attraction and
repulsion depending on their relative positions and types

amacrine

Figure: Amacrine data from the spatstat package

> data(amacrine) ;

plot(amacrine,cols=c("blue","red"))



Geological data: two types of patterns, line segments and points
→ are these patterns independent ?

Copper

Figure: Copper data from the spatstat package

> attach(copper) ; L=rotate(Lines,pi/2) ;

P=rotate(Points,pi/2)

> plot(L,main="Copper",col="blue") ;

points(P$x,P$y,col="red")



Animal epidemiology: sub-clinical mastitis for diary herds

◮ points → farms location

◮ to each farm → disease score (continuous variable)

◮ clusters pattern detection : regions where there is a lack of
hygiene or rigour in farm management
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Figure: The spatial distribution of the farms outlines almost the entire
French territory (INRA Avignon).



Cluster pattern: some comments

◮ particularity of the disease: can spread from animal to animal
but not from farm to farm

◮ cluster pattern: several groups (regions) of points that are
close together and have the “same statistical properties”

◮ clusters regions → approximate it using interacting small
regions (random disks)

◮ local properties of the cluster pattern: small regions where
locally there are a lot of farms with a high disease score value

◮ problem: pre-visualisation is difficult ...

(Stoica, Gay, Kretzschmar, 07)



T-tesselations: examples of natural spatial patterns

Figure: From upper left panel to lower right one: a cracked soil, a mosaic
of agricultural fields, a texture of burnt wood, a fragment of alligator skin.



T-tesselation : agriculture landscape modeling

Figure: Upper row: landscapes of Selommes (a); Kervidy (b); and BVD
(c). Light green polygons depict agricultural plots, dark green polygons
stand for non-agricultural areas (mainly woods and villages). Lower row:
landscapes approximated by T-tessellations.



Few words related to landscape modeling

◮ motivation: study polen dynamics

◮ methodology: probabilistic modeling, stochastic simulation
and statistical inference

◮ key points: reference measure, convergence of the simulation
dynamics, likelihood description

◮ posterior based inference: allow landscape classification

(Admaczyk et al., Stoica, 24)



Image analysis: road and hydrographic networks

a) b)

Figure: a) Rural region in Malaysia (http://southport.jpl.nasa.gov), b)
Forest galleries (BRGM).



Thin networks: some comments

◮ road and hydrographic networks → approximate it by
connected random segments

◮ topologies: roads are “straight” while rivers are “curved”

◮ texture: locally homogeneous, different from its right and its
left with respect a local orientation

◮ avoid false alarms: small fields, buildings,etc.

◮ local properties of the network: connected segments covered
by a homogeneous texture

(Stoica et al., 02, 04)



Cosmology (1): spatial distribution of galactic filaments

Figure: Cuboidal sample from the North Galactic Cap of the 2dF Galaxy
Redshift Survey. Diameter of a galaxy ∼ 30× 3261.6 light years.



Cosmology (2): study of mock catalogs

a) b)

Figure: Galaxy distribution : a) Homogeneous region from the 2dfN
catalog, b) A mock catalogue within the same volume



Cosmology (3): questions and observations

Few words about the 2dF GRS and SDSS catalogues

◮ filaments, walls and clusters : different size and contrast

◮ inhomogeneity effects (only the brightest galaxies are
observed)

◮ filamentary network the most relevant feature

◮ local properties of the filamentary network : connecting
random cylinders containing a “lot” of galaxies “along” its
main axis

Mock catalogues

◮ how “filamentary” they are w.r.t the real observation ?

◮ how the theoretical models producing the synthetic data fits
the reality ?

(Stoica, Martinez and Saar, 07,10)



Cosmology (4): cluster detection

Figure: Distribution of galaxies in the 2MRS data set. Positions of
galaxies are given in supergalactic coordinates, where observer is located
at the origin of coordinates (marked as blue point on the figure). The
thickness of the slice shown in the figure is 15 Mpc. Some galaxy clusters
are marked with black ellipses to highlight the elongation of galaxy
groups/clusters along the line of sight.



Cosmology (5): questions and observations

Few words about the 2MRS data set:

◮ more galaxies are observed

◮ price to pay : lack of precision for the third coordinates

◮ consequence : finger-of-God effect is much more important

◮ galaxy groups and clusters seem elongated along the line of
sight

◮ inhomogeneity effects

(Tempel et al., Stoica, 18)



Cosmology (6): bias effects minimisation in cosmological

data

Figure: Results of the proposed method obtained on a mock catalogue
(yellow). From top to bottom: initial perturbed configuration of galaxies
(black), intermediate configuration after running a few steps of the MH
algorithm (blue), final configuration after running the SA algorithm (red).



Some remarks

◮ in the previous section elongated structures appeared due to
uncertainties that produce the “finger-of-God” effect

◮ peculiar velocity measurements are affected by several types of
bias known together under the generic name of “Malmquist
bias”

◮ propose model that “reverse” these effects and correct the
data

(Sorce, Stoica, Tempel, 23)



Cosmology (7): influence of the new observations on the

already detected structures

a)
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Figure: Photometric galaxies(green dots), spectroscopical galaxies (red
dots) and filaments (blue): a) photometrical galaxies projected on a
sphere, b) photometrical galaxies lines of sight



Few words about the SDSS Data Release 12 data set:

◮ much more galaxies are observed

◮ price to pay: bigger lack of precision for the third coordinates

◮ question: how this new data set is related to the already
existing detected structures

◮ need to compare and to relate complex patterns in 2d and 3d

(Kruuse, Tempel, Kipper and Stoica, 19)



Cosmology (8): knowing the filamentary structure what is

the galaxy distribution ?

Figure: Data set: galaxy positions with spines (filaments main axes)



Some questions related to galaxy distribution

◮ galaxies are spread as pearls on a necklace: (Tempel et al.,
2014)

◮ inhomogeneity: filaments presence or interactions ?

◮ which of these factors controls the galaxy distribution ?

◮ what type of interaction: gravitational, territorial, component
oriented ?

◮ what is the interaction range ?

◮ what is the size of a cluster ?

(Hurtado, Stoica and al., 21)



Network science

Figure: Collaborations among researchers within the Loria laboratory :
HAL data set (2018).



Description of the network:

◮ each node represents a researcher,

◮ the edges are collaborative links

◮ nodes’ color represent the affiliation to a laboratory.

◮ all Loria members are coloured in yellow, while the members
of the other labs are differently coloured

Related questions:

◮ what determines the occurrence of a collaborative link ?

◮ how the presence of cooperating individuals can be
characterised ?

◮ how to quantify the cooperation behaviour of a research
team ?

(Laporte, Stoica et al., 22)



Geosciences: an interaction point process for Bayesian

inference of multiple water sources chemical composition
from hydrochemical data (1)

Figure: Data: deep geothermal fluids presented by Pinti et al. (2020).
Detected sources via the proposed HUG model, a point process with
interactions.



Some hypotheses and warnings:

◮ no chemical reaction

◮ the chemical composition of the sources is the same for all
samples

◮ position in the data space ⇔ composition

◮ distance in the data space ⇔ difference in composition

Challlenges:

◮ multi-dimensionality

◮ recover the sources structures whenever working from
projections

◮ data uncertainities

◮ take into account all the available data

◮ completeley unsupervised methods

(Reype, Stoica et al., 25)



Geosciences: stochastic seismic interpretation through

marked point processes with interactions (2)

a) b) c) d)

Figure: Seismic faults extraction: original data (a), likelihood computed
using convolutional neural networks (b), faults skeleton or thinned
likelihood of the faults (c), faults intepretation using the Candy model
(random segments that connect and allign) (d)

(Taty, Stoica et al., 24)



Geosciences: fracture network characterization using

stochastic simulations of marked point process and
Bayesian inference (3)

Figure: Left: fracture set with length and orientation distributions. Right:
simulations using model parameters estimated from data.

(Bonneau, Stoica, Caumon, 25)



Spatio-temporal data

Time dimension available:

◮ the previous example may be considered snapshots

◮ more recent data sets have also a temporal coordinate

◮ question : what is the pattern hidden in the data and its
spatio-temporal description ?



Roads dynamics in Central Africa region :

◮ in forest region with rare woods, road networks appear and
disappear within the territory of an exploitation concession

◮ there is a difference between “classical” road networks and
“exploitation” networks → mining galleries

◮ this roads dynamics may be relevant in many aspects : health
of the forest, respect of rules for the enterprises,
environmental behaviour and understanding

◮ characterize the distribution and the dynamics of the road
network

(Kleinschroth, Stoica et al., 17)
→ video roads dynamics



Study the spatio-temporal spread of failures in a water distribution
network : failures (black points), detector’s activation (red points)

◮ information available : position, activation date, alert type,
etc.

◮ SEDIF data and questions : do the detectors work ? do the
failures form a particular pattern ?

◮ how to integrate the temporal dynamics ?

(Dante, Stoica et al., 19)



Paleontology: Guérande salinas - fairy rings

◮ growing rings: territories occupied by cyano-bacterias
◮ the size of a ring is proportional with its age
◮ what determines the spatial distribution of the rings: edge

effects, water arrival, interaction ?
◮ how to integrate the temporal dyanmics ?

Figure: The distribution of the morphostructures and their sizes
(diameter in cm)

(Astaburuaga, Stoica et al., 2024)



Sismology: characterisation of earthquakes occurences

◮ earthquakes: space-time events

◮ self-excitation phenomenon

◮ characterize and predict the sismic activity in different regions

Figure: Representation of positions of earthquakes on the French territory



Synthesis

Hypothesis: the pattern to be detected or to be characterised is
approximated by a configuration of random objects that interact

◮ marked points: repulsive or clustered objects (position +
mark)

◮ clusters pattern: superposing random disks

◮ road network: connected and aligned segments

◮ cosmic filament network: connected and aligned cylinders

Important remark:

◮ the considered pattern exhibit a finite local number of objects
→ particular structure of the data and of the problems this
approach is able to deal with



Marked point processes:

◮ probabilistic models for random points with random
characteristics → interacting random objects

◮ origin → stochastic geometry

◮ the pattern is described by means of a probability density →
stochastic modelling

◮ the probability density allows the computation of average
quantities and descriptors (integrals) related to the pattern

◮ conversely, whenever a pattern is observed, the probabilistic
framework allows the derivation of the law of parameters
conditioned on the observation → Bayesian inference



Remarks:

◮ there exist also deterministic mathematical tools able to treat
pattern recognition problems

◮ probability thinking framework offers simultaneously the
analysis and the synthesis abilities of the proposed method

◮ probabilistic approach deeply linked with physics:
◮ exploratory analysis
◮ model formulation
◮ simulation
◮ statistical inference



◮ theoretical challenge: temporal dimension
◮ spatio-temporal marked point processes
◮ random sets theory
◮ general idea: new data sets require new mathematics →

stochastic processes and stochastic geometry
◮ still, partial answers to these questions can be given using the

tools presented in this course

◮ application challenge: big data
◮ examples: cosmological data, geochemistry, particle tracking

(quantum dots), etc.



For the purpose of this course: software and data sets are available

◮ R library : spatstat by A. Baddeley, R. Turner and
contributors → www.spatstat.org

◮ C++ library : DRLib by D. Gemmerle, R. S. Stoica, C.
Reype, N. Gillot and contributors →
https://gitlab.univ-lorraine.fr/labos/iecl/DRlib



Mathematical background

Measure and integration theory → send notes

◮ σ−algebra

◮ measurable space, sets, functions

◮ measure

◮ measure space, integral with respect to a measure

◮ probability space, probability measure



Table of contents

Course 2. Point processes, Binomial and Poisson point processes
Definition of a point process
Binomial point process
Poisson point process
Few words about self-exciting point processes



Course 2. Point processes, Binomial and Poisson point

processes

Construction of a point process : mathematical ingredients

◮ observation window : the measure space (W ,B, ν), with
W ⊂ Rd , B the Borel σ−algebra and 0 < ν(W ) <∞ the
Lebesgue measure

◮ points configuration space : probability space (Ω,F ,P)



Configuration space construction:

◮ state space Ω :

Wn is the set of all n-tuples {w1, . . . ,wn} ⊂ W
Ω = ∪∞

n=0Wn, n ∈ N

◮ events space F : the σ− algebra given by

F = σ({w = {w1, . . . ,wn} ∈ Ω : n(wB) = n(w ∩ B) = m})

for any bounded B ∈ B and m ∈ N

◮ probability measure P : the model answering our questions



Definition
A point process in W is a measurable mapping from a probability
space (S,A) in (Ω,F). Its distribution is given by

P(X ∈ F ) = P{ω ∈ S : X (ω) ∈ F},

with F ∈ F . The realization of a point process is random set of
points in W . We shall sometimes identify X and P(X ∈ F ) and
call them both a point process.



Remarks : point process ⇒ random configuration of points w in a
observation window W . In the following, it is considered that :

◮ a points configuration is w = {w1,w2, . . . ,wn}, with n the
corresponding number of points

◮ the process is locally finite: n(w ∩ B) is finite whenever ν(B)
is finite

◮ the process is simple: wi 6= wj for i 6= j



Marked point processes: attach characteristics to the points →
extra-ingredient: marks probability space (M,M, νM )

Definition
A marked point process is a random sequence x = {xn = (wn,mn)}
such that the points wn are a point process in W and mn are the
marks corresponding for each wn.

Examples:

◮ random circles: M = (0,∞)

◮ random segments: M = (0,∞) × [0, π]

◮ multi-type process: M = {1, 2, . . . , k}
... and all the possible combinations ... → drawing



Stationarity and isotropy. A point process X on W is stationary if
it has the same distribution as the translated proces Xw , that is

{w1, . . . ,wn} L
= {w1 + w , . . . ,wn + w}

for any w ∈ W .
A point process X on W is isotropic if it has the same distribution
as the rotated proces rX , that is

{w1, . . . ,wn} L
= {rw1, . . . , rwn}

for any rotation matrix r.

◮ motion invariant: stationary and isotropic

◮ marked case: in principle easy to generalize, but take care ...

◮ counter example: a point process on a half plane is not
stationary



Intuitive characterisation of a point process : being able to say how
many points of the process X can be found in a neighbourhood in
W .

Tools for point processes analysis: should be able to do the
following

◮ count the points of a point process in a small neighbourhood
of a point in W , and then extend the neighbourhood

◮ count the points of a point process in a small neighbourhood
of a typical point of the process X , and then extend the
neighbourhood

◮ “counting” means using a probability measure based counter



Let X be a point process on W , and let us consider the counting
variable

N(B) = n(XB), B ∈ B,
representing the number of points “falling” in B .

Theorem
The distribution of a point process X on a complete, separable
metric space (W , d) is determined by the finite dimensional
distributions of its count function, i.e. the joint distribution of
N(B1), . . . ,N(Bm) for any bounded B1, . . . ,Bm ∈ B and m ∈ N.

Theorem
The distribution of a simple point process on a complete, separable
metric space (W , d) is uniquely determined by its void probabilities

v(B) = P(N(B) = 0), B ∈ B.



Binomial point process

The trivial random pattern : a single random point x uniformly
distributed in a compact W such that

P(x ∈ B) =
ν(B)

ν(W )

for all B ∈ F .

More interesting point pattern : n independent points distributed
uniformly such that

P(x1 ∈ B1, . . . , xn ∈ Bn) =

= P(x1 ∈ B1) · . . . · P(xn ∈ Bn)

=
ν(B1) · . . . · ν(Bn)

ν(W )n

for Borel subsets B1, . . . ,Bn of the compact W .
→ drawing



Properties

◮ this process earns its name from a distributional probability

◮ the r.v. N(B) with B ⊆ W follows a binomial distribution
with parameters

n = N(W ) = n(xW )

and

p =
ν(B)

ν(W )

◮ the intensity of the binomial point process, or the mean
number of points per unit volume

ρ =
n

ν(W )

◮ the mean number of points in the set B

E(N(B)) = np = ρν(B)



◮ the binomial point process is simple

◮ number of points in different subsets of W are not
independent even if the subsets are disjoint

N(B) = m ⇒ N(W \ B) = n−m

◮ the distribution of the point process is characterized by the
finite dimensional distributions

P(N(B1) = n1, . . . ,N(Bk) = nk) for k = 1, 2, . . .

such that n1 + n2 + . . .+ nk ≤ n



◮ if the Bk are disjoint Borel sets with B1 ∪ . . .Bk = W and
n1 + . . .+ nk = n, the finite-dimensional distributions are
given by the multinomial probabilities

P(N(B1) = n1, . . . ,N(Bk) = nk)

=
n!

n1! . . . nk !

ν(B1)
n1 . . . ν(Bk)

nk

ν(W )n

◮ the void probabilities for the binomial point process are given
by

v(B) = P(N(B) = 0) =
(ν(W )− ν(B))n

ν(W )n



Stationary Poisson point process

Motivation : what happens if extend W towards Rd ?

◮ convergence binomial towards Poisson

◮ → drawing + blackboard

Definition : a stationary (homogeneous) Poisson point process X is
characterized by the following fundamental properties

◮ Poisson distribution of points counts. The random number of
points of X in a bounded Borel set B has a Poisson
distribution with mean ρν(B) for some constant ρ, that is

P(N(B) = m) =
(ρν(B))m

m!
exp(−ρν(B))

◮ Independent scattering. The number of points of X in k
disjoint Borel sets form k independent random variables, for
arbitrary k



Properties

◮ simplicity : no duplicate points

◮ the mean number of points in a Borel set B is

E(N(B)) = ρν(B)

◮ ρ : the intensity or density of the Poisson process, and it
represents the mean number of points in a set of unit volume

◮ 0 < ρ <∞, since for ρ = 0 ⇒ the process contains no points,
while for ρ = ∞ we get a pathological case



◮ if B1, . . . ,Bk are disjoint Borel sets, then N(B1), . . . ,N(Bk)
are independent Poisson variable with means
ρν(B1), . . . , ρν(Bk).Thus

P(N(B1) = n1, . . . ,N(Bk) = nk)

=
ρn1+...+nkν(B1)

n1 . . . ν(Bk)
nk

n1! · . . . · nk !
exp

(
−

k∑

i=1

ρν(Bi)

)
,

◮ this formula can be used to compute joint probabilities for
overlapping sets

◮ the void probabilities for the Poisson point process are given
by

v(B) = P(N(B) = 0) = exp(−ρ(ν(B)))



◮ the Poisson point process with ρ = ct. is stationary and
isotropic

◮ if the intensity is a function ρ : W → R+ such that

∫

B

ρ(w)dν(w) <∞

for bounded subsets B ⊆ W , then we have a inhomogeneous
Poisson process with mean

E(N(B)) =

∫

B

ρ(w)dν(w) = Υ(B)

◮ Υ is called the intensity measure

◮ we have already seen that for the stationary Poisson process :
Υ(B) = ρν(B)



Theorem
Conditionning a Poisson point process. Let X be a stationary
Poisson point process on Rd with intensity ρ > 0 and W a
bounded Borel set with ν(W ) > 0. Then, conditional on the event
{N(W ) = n}, X restricted to W is a binomial point process of n
points.

◮ proof of the theorem : → Exercice 1

◮ b: → Exercice 2, 3 and 4



Some properties of the Poisson point process

Theorem
Interval theorem. Let X be a stationary point process on (0,∞)
with intensity ρ and let the points of X be written in ascending
order :

0 < X1 < X2 < . . . < Xn < . . . .

The the random variables :

Y1 = X1,Yn = Xn − Xn−1

are independently, identically distributed according to
g(y) = ρ exp(−ρy) for y > 0.

◮ bus paradox: if to the initial process a symmetric independent
copy on (−∞, 0) is added, then the interval between two
consecutive points of the process containing 0 is longer than
any other interval between two consecutive points

◮ no extension of this result for d ≥ 2



Maybe most important marked Poisson point process: the unit
intensity Poisson point process with i.i.d. marks on a compact W

◮ number of objects ∼ Poisson(ν(W ))

◮ locations and marks i.i.d. : wi ∼ 1
ν(W ) and mi ∼ νM

The corresponding probability measure : weighted ‘counting” of
objects

P(X ∈ F ) =
∞∑

n=0

e−ν(W )

n!

∫

W×M

· · ·
∫

W×M

1F {(w1,m1), . . . , (wn,mn)}

×dν(w1)dνM(m1) . . . dν(wn)dνM(m)

for all F ∈ F .
Remark: the simulation of this process is straightforward, while the
knowledge of the probability distribution allows analytical
computations of the interest quantities



Simulations results of some Poissonian point processes: the domain
is W = [0, 1] × [0, 1] and the intensity parameter is ρ = 100

a)

Poisson point process

b)

Multi−type Poisson point process

c)

Poisson segment process

0.00 0.25 0.50 0.75 1.00

Figure: Poisson based models realizations : a) unmarked, b) multi-type
and c) Poisson process of segments.



Definition
A disjoint union ∪∞

i=1Xi of point processes X1,X2, . . . is called
superposition.

Proposition

If Xi ∼ Poissson(W , ρi) , i = 1, 2, . . . are mutually independent
and if ρ =

∑
ρi is locally integrable, then with probability one,

X = ∪∞
i=1Xi is a disjoint union and est X ∼ Poisson(W , ρ) .

→ stable character of the Poisson process



Definition
Let be q : W → [0, 1] a function and X a point process on W .
The point process Xthin ⊂ X obtained by including the ξ ∈ X in
Xthin with probability q(ξ), where points are included/excluded
independently of each other, is said to be an independent thinning
of X with retention probabilities q(ξ).

Formally, we can set

Xthin = {ξ ∈ X : R(ξ) ≤ q(ξ)},

with the random variables R(ξ) ∼ U [0, 1], ξ ∈ W , mutually
independent and independent of X .



Proposition

Suppose that X ∼ Poisson(W , ρ) is subject to independent
thinning with retention probabilities q(ξ), ξ ∈ W and let

ρthin = q(ξ)ρ(ξ), ξ ∈ W .

Then Xthin and X \ Xthin are independent Poisson processes with
intensity functions ρthin and ρ− ρthin, respectively.

Corollary

Suppose that X ∼ Poisson(W , ρ) with ρ bounded by a positive
constant C. Then X is distributed as independent thinning of a
Poisson(W ,C ) with retention probabilities q(ξ) = ρ(ξ)/C.



Some general facts concerning the Poisson point processes

◮ the Poisson point process is as important for spatial statistics
as the Gaussian process in classical probability theory

◮ the law is completely known → analytical formulas

◮ the Poisson process is invariant under independent thinning

◮ easy procedure for simulate non-stationary Poisson process

◮ completely random patterns : null or the default hypothesis
that we want to reject

◮ independence → no interaction → no structure in the data



◮ two stationary Poisson point processes, they are not absolutely
continuous with respect to each other, except if one process
has unit intensity or if they have the same intensity

◮ two inhomogeneous Poisson point processes with strictly
positive intensities, they are absolutely continuous with
respect to each other

◮ more complicate models can be built → specifying a
probability density p(x) w.r.t. the reference measure given by
the unit intensity Poisson point process. This probability
measure is written as

P(X ∈ F ) =

∫

F

p(x)µ(dx)

with µ the reference measure.

Remark : in this case the normalizing constant is not available
from an analytical point of view. To check this replace in the
expression of µ(·) the indicator function 1F{y} with p(y) ...



Few words about self-exciting point processes

Hawkes processes : a point process defined by its intensity of
events conditional on the past ρ∗(t) → the intensity of the process
evolves with the time depending on the points arrived in the
configuration : no more independence

ρ∗(t) = ρ+
n∑

i=1

µ(t − ti )

such as

◮ (ti )1≤i≤n the sequence of arrival times of events that have
occurred up to t.

◮ ρ background intensity.

◮ µ : [0,+∞[→ [0,+∞[ excitation function.



Remarks:

◮ if µ = 0 ⇒ classical Poisson process

◮ modelling: several models available for the excitation functions

◮ simulation: thinning method

◮ inference: the conditional intensity allows the construction of
a likelihood function

◮ application: sismology and epidemiology (extend the definition
of the conditional intensity)



Exponential model: an example of excitation function for Hawkes
processes

µ(t) = α exp(−βt)
with α < β. The parameter α gives the instantaneous influence of
events and β the rate at which it decreases.

Figure: Number of events and conditional intensity of a Hawkes process,
with exponential excitation function with parameters α = 0.6, β = 0.8 et
ρ = 1.2.
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Cours 3. Tools for manipulating point processes.

Present context: + Wooclap

◮ mathematical background

◮ definition of a marked point process

◮ Binomial and Poisson point process

◮ important result: the point process law is determined by
counts of points



Let X be a point process on W . The counts of points in bounded
Borel regions of B ⊂ W , N(B) characterize the point process and
they are well defined random variables

◮ it is difficult to average the pattern X

◮ it is possible to compute moments of the N(B)’s

The appropriate mathematical tools are: blackboard explanations

◮ the moment measures

◮ the factorial moment measures

◮ the product densities

◮ the capacity functional ...



An extraordinary short story about their construction and

very important results ...

Exterior conditioning:

◮ the probability of observing the point ζ ∈ W ×M knowing
the configuration y ∈ F where F ∈ F

◮ conditional intensity → interpretation

λ(ζ; x)dζ = P(N(dζ) = 1|X ∩ (dζ)c = x ∩ (dζ)c)

for ζ ∈ K ×M and ζ /∈ x.



Interior conditioning:

◮ the probability of observing the configuration x ∈ F knowing
the point ζ belongs to the process

◮ Palm distributions → interpretation

Pζ(F ) = P(X ∈ F |N({ζ}) > 0)

◮ reduced Palm distributions → interpretation

P!
ζ(F ) = P(X \ {ζ} ∈ F |N({ζ}) > 0)



Campbell - Mecke formula:

E


∑

ζ∈X

g(ζ,X \ {ζ})


 =

∫

W

∫

Ω
g(ζ, x)dP!

ζ(x)dµ(ζ)

where g : W × Ω → R is a measurable function and
µ(A) = EN(A) for any bounded Borel set A ∈ W .

Slivnyak Mecke formula : for stationary Poisson point processes
the reduced Palm distribution and the process distribution coincides



Georgii - Nguyen - Zessin formula:

E


∑

ζ∈X

g(ζ,X \ {ζ})


 = E

[∫

W

g(ζ,X)λ(ζ;X)dν(ζ)

]

The ingredients for the proofs are: continuity of measures,
standard proof argument and the detailed form the probability
density of a point process.



Choquet theorem: the distribution of a random closed set X is
entirely determined by knowledge of the capacity functional

TX(W) = P(X ∩W 6= ∅)

where W is any compact set in W .

◮ random closed sets: more general object than a point process
→ this object cannot be counted, but it can be observed
through a compact window ...

◮ generalizes the characterization of a point process by the
distributions of the void events

◮ a proof of the results can be found in (Molchanov, 2005)

◮ practical applications → Boolean model



Practical importance of the previous results

Summary statistics for point processes:

◮ construction: give particular values to functions and sets in
the previous results

◮ compute their estimation does not require model simulation

◮ for Poissonian processes → analytical formulas

◮ statistical inference: hypothesis testing, parameter estimation
and much more



Some known summary statistics for point processes

Assumption: X is a stationary point process

◮ the intensity or the first order product density function in

µ(B) = α(B) = E[N(B)] =

∫

B

ρ(w)dν(w)

may be estimated by

ρ̂(w) =
∑

x∈X

1{x ∈ B(w , ǫ)}
ν(B(w , ǫ) ∩W )

with B(w , ǫ) the closed ball centred in w of radius ǫ



◮ the second order product density function in

α(B1 × B2) =

∫

B1

∫

B2

ρ(w1,w2)dν(w1)dν(w2) =

∫
ρ(0, r)dr

may be estimated by

ρ̂(o, r) =
1

ν(B(r , ǫ))

∑

x∈X

6=∑

y∈X

1{y − x ∈ B(r , ǫ)}
ν(W ∩Wy−x)

where 6= indicates that the sum is taken over all (x , y) ∈ R2

such that x 6= y and Wa = {w + a : w ∈ W }.



◮ the pair correlation function given by

g(r) =
ρ(x , y)

ρ(z)
=
ρ(0, r = |x − y |)

ρ(z)

is estimated by combining the previous two estimators

ĝ(r) =
1

ν(B(r , ǫ))

∑

x∈X

6=∑

y∈X

1{y − x ∈ B(r , ǫ)}
ν(W ∩Wy−x)ρ̂(x)ρ̂(y)

,

one must remember that this function is sensitive to errors
in ρ̂



◮ the empty space function

F (r) = P(d(ζ,X) ≤ r) = P(X ∩ b(o, r) 6= ∅) = TX(b(o, r))

where P is the distribution of X. An uncorrected estimator of
F is given by

F̂un(r) =
1

m

m∑

j=1

1{d(wj ,X ∩W ) ≤ r}

with m the size ofthe grid {wj}1,...,m over W and
d(w ,X ∩W ) the closest distance from the grid point w to
the point pattern X ∩W



◮ the nearest neighbour distance distribution function

G (r) = Po(d(o,X \ {o}) ≤ r) = P!
o(N(b(o, r) > 0)

where Po and P!
o the Palm and the reduced Palm

distributions, respectively. An uncorrected estimator of G is
given by

Ĝun(r) =
1

n(X)

n(X)∑

i=1

1{d(xi ,X \ xi) ≤ r}



◮ the K function

ρK (r) = E!
o [N(b(o, r))]

where E!
o is the expectation under the reduced Palm

distribution and N(b(o, r)) is the number of points inside the
ball centered at the origin o of radius r . An uncorrected
estimator of K is given by

K̂un(r) =
ν(W )

n(X)(n(X)− 1)

∑

i ,j ,i 6=j

1{d(xi , xj ) ≤ r}



◮ the J function: compare nearest neighbour to empty distances

J(r) =
1− G (r)

1− F (r)

defined for all r > 0 such that F (r) < 1, with the plug-in
estimator given by

Ĵ(r) =
1− Ĝ (r)

1− F̂ (r)



Application 1: hypothesis testing → compare theoretical and
estimated statistics to test complete randomness (Poisson) versus
alternative

◮ formulas for the stationary Poisson process of intensity
function ρ, on W ⊂ R2:

ρ(r) = 1

K (r) = πr2

F (r) = 1− exp[−ρπr2]
G (r) = F (r)

J(r) = 1



Application 2: study the morphological properties of the pattern

◮ J function:

J(r) is





= 1 Poisson: complete random
≤ 1 clustering: attraction
≥ 1 regular: repulsion

◮ the pair correlation function:

ρ(r) is





= 1 Poisson: complete random
≥ 1 clustering: attraction
≤ 1 regular: repulsion



Some comments remarks:

◮ the shown estimators are rather intuitive the principle of their
construction but exhibit bias and edge effects

◮ see the cite references for existing correction methods: border
correction, edge effects, Kaplan-Meyer, etc. (Baddeley et al.
2016, Illian et al. 2008, van Lieshout 2019, Møller and
Waageptersen 2004)

◮ extensions: marks, non-stationary spaces, different observation
spaces W is possible → Boolean model made of nice
geometrical objects ...

◮ this list of statistics is not exhaustive : L, ρ, etc.

◮ parameter estimation ⇒ these function are the ”equivalent”
of the moments in probability theory, they do not entirely
determine the model to be estimated (Baddeley and
Silverman, 1984)



Goodness-of-fit: envelope tests

◮ the null hypothesis H0: the model fits the data

◮ the method is based on some functional summary
characteristic S(r): such as F (r),G (r), J(r),K (r), ρ(r), etc.

◮ idea: compare empirical summary characteristic estimated
from a point pattern in the observation window W to
estimates of the summary characteristic for simulations from
the model

◮ the model is simulated using the estimated parameters

◮ the simulations from the model are generated in the same
window W



◮ the characteristic S(r) is estimated by Ŝ(r) computed from
the observed data

◮ the model is simulated k times

◮ estimates of S(r), Ŝi(r) are computed for each sample
i = 1, . . . , k

◮ the extreme values are computed:

Smin(r) = min
(i)

Ŝi(r) and Smax(r) = max
(i)

Ŝi(r)

◮ if the inequality

Smin(r) ≤ Ŝ(r) ≤ Smax(r)

is verified for all r , the H0 is accepted, otherwise is rejected



◮ this test is regarded and intepreted as a significance test

◮ for fixed r⋆:
◮ the error probability in one-sided testing is 1

k+1

◮ the error probability in two-sided testing is 2
k+1

◮ thus for k = 19 → α = 0.05 or for k = 99 → α = 0.01

◮ the test can be modified and larger or smaller values can be
used, rather than the minimum and maximum values
◮ for α = 0.05, k = 999 may be chosen and Smin is replaced by

the 25th of the order Si and Smax by the 975th



Summary statistics for an observed point pattern: the ”cell” data
set

◮ F ,G , J and K functions

◮ regular pattern → repulsion

◮ R code

> data(cells)

> plot(allstats(cells))

or

> plot(Fest(cells)) ; plot(Gest(cells)) ;

plot(Jest(cells)) ; plot(Kest(cells))



Summary statistics − cells
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Figure: Estimated summary statistics: cell data set



Road network dynamics:

◮ data: spatio-temporal evolution of a road network due to
logging activity → you have already seen the video ...

◮ questions:
◮ do the exploitation companies respect the regulations for

preserving the forest ?
◮ does the economical activity affect the resilience capacity of

the forest ?

◮ exploratory analysis: empty space function → road-less space
measure

◮ challenge: build a stochastic model

◮ people: F. Kleinschroth, J. R. Healey, S. Gourlet-Fleury, F.
Mortier, M. N. M. van Lieshout

◮ paper: (Kleinschroth et al., 2017)
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Figure: Toy model for explaining the behaviour of the empty space
function: the simulated roads have the length, so the same density of
roads per unit of surface.
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Cosmology: influence of the new observations on the already
detected structure

◮ data: SDSS Data Release 12 - photometrical galaxies

◮ question:
◮ how this new data set is related to the already detected

structure ?

◮ exploratory analysis: adapt the F ,G and J function to
establish possible dependence of different types of patterns

◮ challenge: the position of the photometrical galaxies is not
entirely known

◮ people: M. Kruuse, E. Tempel, R. Kipper

◮ paper: (Kruuse et al., 2019)



Preliminary result :

Figure: Estimation of the bivariate J function. The considered sets were
the photometric galaxies and the projection on the sphere of the
filamentary spines that are rather perpendicular on the line of sight. This
result indicates positive association of these two patterns.



Synthesis :

◮ good exploring tool: spatstat provides also some 3d
estimators

◮ different estimators

◮ numerical sensitivity, border effects

◮ parameter estimation: some limits

◮ statistical tests: envelopes, bootstrap, permutation, central
limit theorem

⇒ the implementation of some statistical tests require simulation
of the model under the null hypothesis



Table of contents
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Previously in this course + WOOCLAP...

Direct application of counting measures and Palm distributions for
point process analysis

◮ counting measures → summary statistics for point pattern
characterization

◮ two categories: interpoint distances (F ,G and J) and second
order characteristics (ρ,K and L)

◮ possible extension of the summary statistics: marks,
non-stationary processes, different observation spaces W case
and spatio-temporal



◮ non-parametrical estimation of the summary statistics: kernel
estimation and management of the border effects

◮ central limit available: statistical tests

◮ envelope simulation based tests: reject a particular model

◮ summary statistics for parameter estimation of a given model:
minimum contrast method
◮ these statistics are an ”equivalent” of moments in probability

theory
◮ it is not always, that they entirely determine the model to be

estimated
◮ (Baddeley and Silverman, 1984), (Bedford and Berg, 1997)



◮ good exploring tool: spatstat

◮ outline important characteristics of a point pattern:
clustering, repulsion, completely randomness

◮ it is difficult to differentiate between interaction and
inhomogeneity if only one realisation is available

◮ need for models able to reproduce these characteristics



Cox processes

Definition
Let Υ be a random locally finite diffuse measure on (W ,B). If the
conditional distribution of X given Υ is a Poisson process on W
with intensity measure Υ, X is said to be a Cox point process with
driving measure Υ. Sometimes X is also called doubly stochastic
Poisson process.

Remarks :

◮ if there exists a random field Z = {Z (w),w ∈ W } such that

Υ(B) =

∫

B

Z (w)dν(w)

then X is a Cox process with driving function Z



◮ the conditional distribution of X given Z = z is a distribution
of the Poisson process with intensity function z ⇒

E[N(B)|Z = z] =

∫

B

z(w)dν(w)

◮ the first order factorial moment measure is obtained using the
law of the total expectation

µ(1)(B) = α(1)(B) = E[N(B)]

= E [E[N(B)|Z = z]] = E

[∫

B

Z (w)dν(w)

]

= E[Υ(B)] =

∫

B

EZ (w)dν(w)

◮ if ρ(w) = EZ (w) exists then it is the intensity function



◮ smilarly, it can be shown that the second order factorial
moment measure is

α(2)(B1 × B2) = E [Υ(B1)Υ(B2)]

= E

[∫

B1

Z (u)dν(u)

∫

B2

Z (v)dν(v)

]

= E

[∫

B1

∫

B2

Z (u)Z (v)dν(u)dν(v)

]

=

∫

B1

∫

B2

E [Z (u)Z (v)] dν(u)dν(v)

◮ if ρ(2)(u, v) = EZ (u)Z (v) exists, then it is the product density



◮ the pair correlation function is

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)
=

E [Z (u)Z (v)]

E [Z (u)]E [Z (v)]

◮ depending on Z it is possible to obtain analytic formulas for
the second order characteristics (g ,K and L) and the
interpoint distance characteristic (F ,G and J)



◮ the variance VarN(B) is obtained using the total variance law,
and it is

VarN(B) = EN(B) + Var

[∫

B

Z (w)dν(w)

]
≥ EN(B)

⇒ over - dispersion of the Cox process counting variables

◮ the void probabilities of Cox processes are

P(N(B) = 0)) = E1{N(B) = 0}
= E [E1{N(B) = 0}|Z = z)] = E [P(N(B) = 0|Z = z)]

= E

[
exp

(
−
∫

B

Z (w)dν(w)

)]

= E [exp (−Υ(B))]



Trivial Cox process : mixed Poisson processes

◮ Z (w) = Z0 a common positive random variable for all
locations w ∈ W

◮ X |Z0 follows a homogeneous Poisson process with intensity Z0

◮ the driving measure is Υ(B) = Z0ν(B)

Thinning of Cox processes :

◮ X is a Cox process driven by Z

◮ Π = {Π(w) : w ∈ W } ⊆ [0, 1] is a random field which is
independent of (X ,Z )

◮ Xthin|Π → the point process obtained by independent thinning
of the points in X with retention probabilities Π

◮ ⇒ Xthin is a Cox process driven by Zthin(w) = Π(w)Z (w)



Log Gaussian Cox processes

◮ introduced independently by astronomers (Coles and Jones,
1991) and statisticians (Møller et. al., 1998)

◮ consider Y = logZ is a Gaussian field
◮ for any integer n > 0, locations ξ1, . . . , xn ∈ Rd and numbers

a1, . . . an ∈ R,
∑n

i=1 aiY (ξi ) follows a normal distribution

◮ the Cox process X driven by Z = exp(Y ) is a log Gaussian
Cox Process (LGCP)



◮ the distribution of (X ,Y ) is entirely determined by the mean
and the covariance function

m(ξ) = EY (ξ) and c(ξ, η) = Cov(Y (ξ)Y (η))

◮ covariance function :
◮ for simplicity it may be considered translation invariant

c(ξ, η) = c(ξ − η)

of the form
c(ξ) = σ2r(ξ/α)

◮ the function r : Rd → [−1, 1] is a correlation function for a
Gaussian field iif r is positive definite

n∑

i=1

aiaj r(ξi , ξj) > 0 for all ξ1, . . . , xn ∈ Rd , a1, . . . an ∈ R



◮ weak conditions are required on m and r in order to get

Υ(B) =

∫

B

Z (ξ)dν(ξ)

for bounded B ⊂ Rd . For instance, we may require ξ → Y (ξ)
continuous almost surely

◮ as example, this is satisfied by continuous m and r such that

r(ξ) = exp(− ‖ ξ ‖δ), 0 ≤ δ ≤ 2

with δ controlling the smoothness of the realizations of the
Gaussian field
◮ δ = 1 : exponential correlation function
◮ δ = 1/2 : stable correlation function
◮ δ = 2 : Gaussian correlation function

◮ there is a one-to-one correspondence between (m, c) and
(g , ρ) ⇒ the distribution of (X ,Y ) is uniquely determined by
(ρ, g)

→ Exercise 11



Cluster processes

Definition
Let C be a point process (parent process), and for each c ∈ C let
Xc be a finite point process (daughter process). Then

X =
⋃

c∈C

Xc

is called a cluster point process.

Definition
Let X be a cluster point process such that C is a Poisson point
process and conditional on C, the processes Xc , c ∈ C are
independent. Then X is called a Poisson cluster point process.



Neyman-Scott processes

Definition
Let X be a Poisson cluster point process such that centred
daughter processes Xc − c are independent of C . Given C, let the
points of Xc − c be i.i.d. with probability density function k on Rd

and N(Xc ) be i.i.d. random variables. Then X is called a
Neyman-Scott process. If moreover N(Xc ) given C has a Poisson
distribution with intensity α, then X is a Neyman-Scott Poisson
process.

→ drawing + Exercice 12



Theorem
Let X be a Neyman-Scott Poisson process such that C is a
stationary Poisson process with intensity κ. Then X is stationary
process with intensity ρ = ακ and pair correlation function

g(u) = 1 +
h(u)

κ
,

where

h(u) =

∫
k(v)k(u + v)dν(v)

is the density for the difference between two independent points
distributed according to k.

Proof.
→ Exercise 13



Other very known cluster point processes

Matérn cluster process (Matérn 1960,1986)

k(u) =
1{‖ u ‖≤ r}

ωd rd

is the uniform density on the ball b(o, r)

Thomas process (Thomas 1949)

k(u) =
exp

(
−‖u‖2

2ω2

)

(2πω2)d/2

is the density for Nd (0, ω
2Id ), i.e. for d independent normally

distributed variables with mean 0 and variance ω2 > 0



◮ both kernels are isotropic

◮ the Thomas process pair correlation function is

g(u) = 1 +
1

κ(4πω2)d/2
exp

[
−‖ u ‖2

4ω2

]

and its K−function for d = 2 is

K (r) = πr2 +
1− exp[−r2/(4ω2)]

κ

◮ other summary statistics can be also computed

◮ the expressions of the summary statistics are more
complicated for the Matérn process

→ drawing the processes ...



Remarks :

◮ usually in applications Z is unobserved

◮ one cannot distinguish a Cox process X from its
corresponding Poisson process X |Z whenever a single
realisation of X is available

◮ open question: which of the two models might be most
appropriate, i.e. whether Z should be random or
“systematic”/deterministic



◮ prior knowledge of the observed phenomenon

◮ Bayesian setting of the intensity function ⇒ Cox processes

◮ if we want to investigate the dependence of certain covariates
associated to Z , these may be treated as systematic terms,
while unobserved effects may be treated as random terms

◮ Cox process: more flexible models for clustered patterns than
inhomogeneous Poisson point processes

◮ parameter estimation methods: minimum contrast, Palm
distributions, composite likelihood
◮ based on the K function and the Palm distributions
◮ spatstat: the kppm function

→ Exercise 14
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Finite point processes

◮ the independence property of the Poisson based processes
does not allow to introduce point interactions

◮ Gibbs models are flexible point processes that allow the
specification of point interactions via a a probability density

◮ in the following: consider (W , d) a complete, separable metric
space such that W ⊂ Rd and 0 < ν(W ) <∞

◮ the condition that W has to be finite is required in order to
obtain a well defined probability density for the considered
Gibbs model



◮ let µ be the unit intensity Poisson point process on W

◮ the probability density of a Gibbs model is a Radon-Nykodim
derivative w.r.t the Poissonian reference measure µ

◮ within a statistical physics context, the probability density of
such a point process has the form

p(x) =
exp[−U(x|θ)]

α(θ)

with U(x|θ) the energy function, θ the model parameters and

α(θ) =

∫

Ω
exp[−U(x|θ)]dµ(x)

the normalizing constant or the partition function



◮ under these circumstances, the probability distribution of a
Gibbs model writes as

P(X ∈ F ) =

∫

F

p(x)dµ(x)

and by introducing the expression of µ, it is further expressed
as

P(X ∈ F ) =

=
∞∑

n=0

exp[−ν(W )]

n!

∫

W

· · ·
∫

W

1({x1, . . . , xn} ∈ F )×

p({x1, . . . , xn})dν(x1) . . . dν(xn),

whenever n > 0. If n = 0, we take exp[−ν(W )]1(∅ ∈ F )p(∅).
If ν(W ) = 0, then P(X = ∅) = 1. For applications, we always
assume that ν(W ) > 0.



◮ usually the probability density is known only up to a
constant : p ∝ h = exp(−U)

◮ the normalizing constant or the partition function is given by

α =

∫

Ω
h(x)dµ(x)

that becomes

α =
∞∑

n=0

exp[−ν(W )]

n!

∫

W

· · ·
∫

W

h({x1, . . . , xn})dν(x1) . . . dν(xn)

(1)

◮ the marked case writes in a similar way by introducing also
the marks distribution νM



◮ the previous quantity is not always available under analytical
closed form

◮ this is the main difficulty to be solved while ausing this
approach ...

Normalizing constant for the Poisson process : Let ρ be the
intensity function of a Poisson point process on W . Its probability
density up to a normalizing constant is

p(x) ∝
∏

xi∈x

ρ(xi ).



Let Υ(B) =
∫
B
ρ(w)dν(w) be the associated intensity measure.

By using (1), we get

α = exp[−ν(W )]

∞∑

n=0

Υ(W )n

n!
= exp[Υ(W )− ν(W )],

that gives for the complete probability density

p(x) = exp[ν(W )−Υ(W )]
∏

xi∈w

ρ(xi )

If the process is stationary ρ(x) = ρ = ct., then the probability
density is

p(x) = exp[(1− ρ)ν(W )]ρn



Remarks :

◮ the probability density is specified only for finite point
processes

◮ the extension to Rd of a finite point process specified by a
probability density is possible under some conditions (see
(Møller and Waagpetersen, 2004, section 6.4))

◮ phase transition - if such an extension is possible, does it
surely leads to an unique probability measure ?



Construction of the probability density

◮ specify the interaction functions φ(k) : Ω → R+

φ(xi1 , . . . , xik )
(k)

for any k−tuplet of objects

◮ the un-normalized probability density is the product of all
these functions

h(x) =
∏

xi∈x

φ(xi )
(1) · · ·

∏

{xi1 ,...,xik }∈x

φ(xi1 , . . . , xik )
(k) (2)

◮ clearly, the energy function is obtained by taking
U(x) = − log h(x)

◮ α the normalizing constant is difficult to be determined :
untractable mathematical formula



◮ the un-normalized probability densities (2) are suitable for
modelling provided they are integrable on Ω ; that is

α =

∫

Ω
h(x)dµ(x) <∞.

◮ the following results ensure the integrability of the probability
density of a marked point process → the Ruelle stability
conditions



Definition
Let X be a marked point process given by the un-normalized
probability density h w.r.t the reference measure µ. The process X
is stable in the sense of Ruelle, if it exists Λ > 0 such that

h(x) ≤ Λn(x), ∀x ∈ Ω. (3)

Proposition

The un-normalized probability density of a stable point process is
integrable.



Proof.
The integrability of h(x) follows directly from the preceding
condition :

∫

Ω
h(x)µ(dx) ≤

∫

Ω
Λn(x)µ(dx)

=
∞∑

n=0

exp[−ν(W )][Λν(W )])n

n!
= exp[ν(W )(Λ − 1)].



Definition
Under the same hypotheses as in Prop. 3, a marked point process
is said to be locally stable if it exists Λ > 0 such that

h(x ∪ {η}) ≤ Λh(x), ∀x ∈ Ω, η ∈ W ×M \ x (4)

Proposition

A locally stable point process is stable in the sense of Ruelle.



Proof.
It is easy to show by induction that

h(x) ≤ h(∅)Λn(x), ∀x ∈ Ω.

The local stability of a point process (4) implies its
integrability (3).



◮ the conditional intensity for a point process X with probability
density p is

λ(η; x) =
p(x ∪ {η})

p(x)
=

h(x ∪ {η})
h(x)

, x ∈ Ω, η ∈ W ×M \ x,

taking a/0 = 0 for a ≥ 0

◮ the conditional intensity is also known in the literature as the
Papangelou intensity condition (we have already meet it)

◮ we shall often consider functions h : Ω → [0,∞[ which are
hereditary

h(x) > 0 ⇒ h(y) > 0, for y ⊂ x.

◮ if p is hereditary, then there is a one-to-one correspondence
between p and λ



Importance of the conditional intensity : key element in modelling

◮ plays a similar role as the conditional probabilities for Markov
random fields

◮ integrability

◮ convergence properties of the MCMC algorithms used to
sample from p

◮ the process X is attractive if x ⊆ y implies

λ(η; x) ≤ λ(η; y),

and repulsive otherwise

λ(η; x) ≥ λ(η; y),



◮ attractive processes tend to cluster the points, while the
repulsive ones tend to distance the points

◮ these conditions are important also for exact MCMC
algorithms

◮ there exist processes that are neither attractive nor repulsive

◮ there are processes that are integrable but not locally stable :
Lennard - Jones (statistical physics)



Markov point processes

The conditional intensity of an interacting point process is given by

λ(η; x) = φ(η)(1)
∏

xi∈x

φ(xi , η)
(2) · · ·

∏

{xi1 ,...,xik }∈x

φ(xi1 . . . . , xik , η)
(k+1)

◮ difficult to manipulate

◮ possible simplifications : limit the order of interactions → only
pairs of points for instance

◮ limit the range of the interaction : a point interact only with
its closest neighbours



Let ∼ be a symmetrical and reflexive relation between points
belonging to W ×M. This may be a typical neighbourhood
relation based on a metric (Euclidean, Hausdorff) or on sets
intersection.

Definition
A clique is a configuration x ∈ Ω such that η ∼ ζ for all η, ζ ∈ x.
The empty set is a clique.



Definition
Let X be a marked point process on W ×M with probability
density p w.r.t the reference measure µ. The process X is Markov
if for all x ∈ Ω such that p(x) > 0, the following conditions are
simultaneously fulfilled :

(i) p(y) > 0 for all y ⊆ x (hereditary)

(ii) p(x∪{ζ})
p(x) depends only on ζ and ∂(ζ) ∩ x = {η ∈ x : η ∼ ζ}.

This process is known in the literature as the Ripley-Kelly Markov
process.



Example : The probability density w.r.t to µ of a marked Poisson
process on W ×M with constant intensity function
(ρ(η) = β > 0) is

p(x) = βn(x) exp[(1 − β)ν(W )].

Clearly p(x) > 0 for all configurations x. Its Papangelou
conditional intensity is

λ(η; x) = β1{η /∈ x}.

Hence, the Poisson process is Markov, independently of the
interaction functions φ(k). This agrees with the choice of the
Poisson process for modelling a completely random structure.



The following result is known as the spatial Markov property.
→ drawing

Theorem
Let X be a Markov point process with density p(·) on W and
consider a Borel set A ⊆ W. Then the conditional distribution of
X ∩ A given X ∩ Ac depends only on X restricted to the
neighbourhood

∂(A) ∩ Ac = {u ∈ W \ A : u ∼ a for some a ∈ A}.

Proof.
The proof is given by (van Lieshout 2000, Thm. 2.1, pp. 47) and
also by (Møller and Waagepetersen 2004, Prop. 6.1, pp. 93).



The following result is known as the Hammersley-Clifford theorem.

Theorem
A marked point process density p : Ω → R+ is Markov with
respect to the interaction relation ∼ if and only if there is a
measurable function φc : Ω → R+ such that

p(x) =
∏

cliques y⊆x

φc (y), α = φ(∅) (5)

for all x ∈ Ω.

Proof.
This result is proved in (Ripley and Kelly 1977, Thm. 1, pp.189),
(van Lieshout 2000, Thm. 2.2 pp. 49) and (Møller and
Waagepetersen 2004, Thm. 6.1, pp. 89).



Remarks :

◮ the previous result simplifies the writing of the probability
density of an interacting point process

◮ taking φc (y) = 1 whenever y is not a clique leads us to the
equivalence of (2) and (5)

◮ Markov point processes are known in physics community as
Gibbs point processes

p(x) =
1

Z
exp [−U(x)] =

1

Z
exp


−

∑

cliques z⊆x

Uc(z)


 ,

with Z the partition function, U the system energy and
Uc = log φc the clique potential

◮ all the Markov processes are Gibbs

◮ the reciprocal is not true



Poisson process as a Markov process : the probability density of a
Poisson point process is

p(x) = e(1−β)ν(W )
∏

x∈x

β.

Hence, the interactions functions applied to cliques are

φc(∅) = e(1−β)ν(W )

φc({u}) = β

with φc ≡ 1 for the cliques made of more than one object. The
potential of the cliques made of a single object is

Uc(u) = − log β,

while Uc = 0 otherwise. This confirms the lack of interaction in
the Poisson process. It validates also, the choice of this process to
model patterns exhibiting no particular morphological structure.



Distance interaction model - Strauss model : (Strauss, 1975),
(Kelly and Ripley, 1976)

p(x) = αβn(x)γsr (x), α, β > 0, γ ∈ [0, 1]
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Figure: Strauss model realisations for different parameter values : a)
γ = 1.0, b) γ = 0.5 and c) γ = 0.0.



The interaction function γ : W ×W → [0, 1] is

γ(u, v) =

{
γ if d(u, v) ≤ r
1 otherwise

The conditional intensity of adding a point η to x \ {η} is

λ(u; x) = βγcard∂(u)

where ∂(u) = {v ∈ x : d(u, v) ≤ r}



The Strauss model is a locally stable model with Λ = β and
Markov with interaction range r .
The interaction functions applied to cliques are

φc(∅) = α

φc({u}) = β

φc({u, v}) = γ(u, v)

and φc ≡ 1 if the cliques have three or more objects. The
interaction potentials are obtained taking Uc = − log φc .



Multi-type pairwise interaction processes

a)

Bivariate Poisson model

b)

Bivariate Strauss model

c)

Widom − Rowlinson model

Figure: Bivariate pairwise interaction processes with r = 0.05 and : a)
γ1,2 = γ2,1 = 1.0, b) γ1,2 = γ2,1 = 0.75 and c) γ1,2 = γ2,1 = 0. Circles
around the points have a radius of 0.025.



Widom-Rowlinson or penetrable spheres model : this model is
described by the mark space M = {1, 2} and the density

p(x) = α
∏

(w ,m)∈x

βm
∏

(u,1),(v ,2)∈x

1{‖ u − v ‖> r} (6)

w.r.t the standard Poisson point process on W ×M with
νM(1) = νM(2).
The parameters β1 > 0 and β2 > 0 control the number of particles
of type 1 and 2, respectively.
The conditional intensity for adding (w , 1) /∈ x to the configuration
x is

λ((w , 1); x) = β11{d(u,w) > r for all the (u, 2) ∈ x}.

A similar expression is available for adding an object of type 2.



The Widom-Rowlinson is hereditary and locally stable with

Λ = max{β1, β2}.

Furthermore, λ((w ,m); x′) ≥ λ((w ,m); x) for all x′ ⊆ x and
(w ,m) ∈ W ×M.
The interaction functions are

φc(∅) = α

φc({(w ,m)}) = βm

φc({(u, 1), (v , 2)}) = 1{d(u, v) > r}

and φc ≡ 1 if the cliques have two or more objects of the same
type.



Multi-type pairwise interaction process : consider M = {1, . . . , I}
with I ∈ N and νM the uniform distribution on M. The probability
density w.r.t the standard multi-type process is

p(x) = α
∏

(w ,m)∈x

βm
∏

(u,i)6=(v ,j)∈x

γij(d(u, v)). (7)

◮ the parameters βm > 0, m ∈ M control the intensity of the
points of type m.

◮ the measurable functions γij : [0,∞) → [0, 1] describe the
interaction between each type pair of objects i , j ∈ M

◮ symmetric functions : γij ≡ γji for all i , j ∈ M



For (w ,m) /∈ x, the conditional intensity is

λ((w ,m); x) = βm
∏

(u,i)∈x

γim(d(u,w)).

This process is locally stable with Λ = maxm∈M βm, anti-monotonic
and Markov under smooth assumptions on the functions γij .
The interaction functions are

φc(∅) = α

φc({(w ,m)}) = βm

φc ({(u, i), (v , j)}) = γij(d(u, v))

with φc ≡ 1 for cliques of three objects and more.



Area interaction model :
(Baddeley and van Lieshout, 1995)

p(x) ∝ βn(x)γ−ν[Γ(x)], β, γ > 0 (8)
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Figure: Area interaction model realisations for different parameter
values : a) γ = 1.0, b) γ > 1.0 and c) γ < 1.0.



Remarks :

◮ the first probability density based point process producing
clusters → alternative to the Strauss process ...

◮ the model should be re-parametrized in order to be identifiable

Proposition

The area interaction process given by (8) is a Markov point
process.

Proof.
→ left as an exercise



Candy model :

(van Lieshout and Stoica, 2003), (Stoica, Descombes and Zerubia,
2004)

p(x) ∝ γ
nf (x)
f γ

ns (x)
s γ

nd (x)
d γ

no(x)
o γ

nr (x)
r ,

with γf , γs , γd > 0 and γo , γr ∈ [0, 1]
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Figure: Candy model realisations.



Bisous model :
(Stoica, Gregori and Mateu, 2005)

p(x) ∝
[

q∏

s=0

γ
ns (x)
s

] ∏

κ∈Γ⊂R

γnκ(x)κ γs > 0, γκ ∈ [0, 1]
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Figure: Random shapes generated with Bisous model.



Remarks :

◮ Candy and Bisous are based on compound interactions →
drawing + explanations

◮ connections are produced by giving different weights for the
repulsive interactions

◮ the conditional intensity is bounded

λ(ζ; x) ≤
q∏

s=0

max{γs , γ−1
s }12 = Λ.

this gives the name of the model → kissing number

◮ → blackboard - Candy

◮ Markov range : 4rh + 2ra

◮ the models are locally stable but the exact simulation is
sometimes difficult ...



Compare two random sets : idea inspired by work with M. N. M.
van Lieshout and classical literature in mathematical morphology

Figure: Realizations of the Candy model obtained with different samplers.



Empty space function : these probability distributions should be
similar ⇒ Kolmogorov-Smirnov p− value is higher than 0.8
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Figure: Estimation of the empty space function for the previous Candy
realizations
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Principles of Markov chain Monte Carlo simulation

+ WOOCLAP
Problem: sampling or simulation probability distributions

π(A) =

∫

A

p(x)dµ(x)

that are not available in closed form ↔ normalising constant
analytically intractable

Principle: simulate a Markov chain that has π as equilibrium
distribution



Basic MCMC sampler

Algorithm

x = My first MCMC sampler (T )

1. choose an initial condition x0

2. for i = 1 to T , do

{
xi = Update(xi−1)

}
3. return xT .



Principles of MCMC sampling algorithms :

◮ simulate a Markov chain

◮ the Update function reproduces the transition kernel of the
considered Markov chain

◮ whenever T → ∞, the output xT is asymptotically distributed
according to π, the distribution of interest

◮ if the Markov chain has good properties → statistical
inference is possible from the obtained simulations

◮ several existing solutions : Gibbs sampler,
Metropolis-Hastings, birth and death processes, stochastic
adsorption, RJMCMC, exact simulation (CFTP, clan of
ancestors, etc.)



Important properties of the Markov chain transition kernel: these
properties guarantee the convergence of the Makov chain
simulation algorithm

◮ irreducibility: all the states are accessible from any other state

◮ aperiodicity: no deterministic “loops”

◮ recurrence: all the states are visited often enough

◮ ergodicity: the convergence speed of the chain is good enough
and the dependence of the initial conditions is controlled



Coarse interpretation of the role of these properties:

◮ irreducibility and aperiodicity: if the chain has an invariant
distribution, then convergence towards the equilibrium
distribution holds everywhere, exception of a set of initial
conditions of null measure

◮ recurrence: gets rid of the previous null set - independence of
the initial conditions

◮ ergodicity: Central Limit Theorem holds for the obtained
samples

Remark:

◮ simulating or sampling marked point processes involves the
construction of MCMC dynamics on a general state space →
adapting the previous properties to this context



Metropolis-Hastings algorithm

Principle :

◮ consider the chain in the state xi = x

◮ propose a new state xf = y using the proposal density
q(xi → xf )

◮ accept this new state with probability

α(x , y) = min

{
1,

p(y)q(y → x)

p(x)q(x → y)

}

if not remain in the previous state

◮ iterate as many times as we need (... in theory till infinity ...)



Properties

◮ α(·, ·) is a solution of the detailed balance equation →
reversibility is preserved

◮ very few conditions are required for q(· → ·) so that the chain
has all the convergence properties

◮ q(· → ·) should be simple to calculate and to simulate

◮ the knowledge of the normalizing constant of p(·) is not
needed

→ discuss the derivation of the acceptance probability and Exercise
17



MH algorithm for sampling marked point processes

Idea : taking into account the structure of the configuration space,
the transition kernel propose to add an object to the configuration
with probability pb or propose to delete an object from the
configuration with the probability pd

Birth : add an object

◮ initial state : xi = x an object configuration

◮ final state : xf = x ∪ {ζ}
◮ proposal density to add an object : choose uniformly its

location in W and its mark independently according to νM

q(xi → xf ) = q(x → x ∪ {ζ}) = pb
1{ζw ∈ W }
ν(W )



◮ proposal density to remove an object : choose uniformly an
object from x ∪ {ζ}

q(xf → xi ) = q(x ∪ {ζ} → x) = pd
1{ζ ∈ x ∪ {ζ}}

n(x) + 1

◮ acceptance probability

α(x → x ∪ {ζ}) = min

{
1,

pdp(x ∪ {ζ})
pbp(x)

× ν(W )

n(x) + 1

}
(9)



Death : remove an object

◮ the inverse movement of birth

◮ acceptance probability

α(x → x \ {ζ}) = min

{
1,

pbp(x \ {ζ})
pdp(x)

× n(x)

ν(K )

}
(10)



A transition kernel doing these transformations is

P(x,A) = pb

∫

K

b(x, η)α(x, y := x ∪ {η})1{y ∈ A}dσ(η)

+ pd
∑

η∈x

d(x, η)α(x, y := x \ {η})1{y ∈ A}

+ 1{x ∈ A}
[
1− pb

∫

K

b(x, η)α(x, x ∪ {η})dσ(η)

− pd
∑

η∈x

d(x, η)α(x, x \ {η})
]
,

where K = W ×M, dσ(η) = dσ((w ,m)) = dν(w)× dνM(m) et
0 < pb + pd ≤ 1. The birth rate is b(x, η) = 1

ν(W ) and the death

rate is d(x, η) = 1
n(x)



Remarks :

◮ the Papangelou intensity appears in the acceptance probability

◮ local stability property guarantees good convergence
properties of the Markov chain

◮ → blackboard : discuss reversibility



Algorithm

y = Update(x)

1. Choose “birth” or “death” with probabilities pb and pd ,
respectively.

2. If “birth” was chosen, then generate a new object following
b(x, η). Accept the new configuration, y = x ∪ {η} with the
probability α(x, y) given by (9).

3. If “death” was chosen, then select the object to be removed
using d(x, η). Accept the new configuration, y = x \ {η} with
the probability α(x, y) given by (10).

4. Return the present configuration.



Theorem. Let be b, d and q as described previously. Assume that
b(x, η) and d(x, η) are strictly positive on their corresponding
definition domain, respectively, and

lim
n→∞

un = lim
n→∞

[
sup

η∈W×M,x∈Ξn

d(x ∪ {η}, η)
b(x, η)

]
→ 0.

Fix pb, pd ∈ (0, 1) with pb + pd ≤ 1 and let p(x) be the probability
density of a marked point process on W ×M. The point process is
locally stable and p(x) is built w.r.t the standard Poisson process
µ. The MH sampler defined previously simulates a Markov chain
with invariant measure π =

∫
pdµ who is φ−irreducible, Harris

recurrent and geometric ergodic.
→ proof: Bonus C



Remark :

◮ the same result holds if change moves are introduced with
care ... → explain ...

Optimality of the MH dynamics

◮ theoretical convergence properties

◮ local computation

◮ no need of the normalising constant

◮ highly correlated samples : only one element changed per
accepted transition

◮ allows improvements : transition kernels that “help” the
model



Tailored to the model proposal distribution

b(x, η) =
p1
ν(K )

+ p2ba(x, η),

with p1 + p2 = 1 and ba(x, η) a probability density given by

ba(x, η) =
1

n(A(x))

∑

x∈A(x)

b̃(x , η).

◮ the role of ba(x, η) : propose the birth of a new pointin those
regions where the interactions between the new born and the
other configuration members is favoured or not penalised by
the model

◮ A(x) : the set of marked points in a configuration that are not
exhibiting yet “good” interactions



Figure: Extremities marked by triangles are connected and further than
1
2 lmax + rc to the boundary, those labeled by a black disk are closer than
1
2 lmax + rc to the boundary of K .



MH algorithm for sampling the Candy model : dynamics behaviour
through the sufficient statistics analysis
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◮ great adaptability and theoretical convergence

◮ easy to use

◮ appropriate solutions need to be found for each new model

◮ the general framework, even if it has good theoretical
properties, it is not always the most efficient from a numerical
point of view

◮ still, if no good theoretical properties are available, the results
will be always bad

→ Exercise 18



Open questions MCMC methods:

Classical algorithms - MH based dynamics

◮ good convergence properties but convergence at infinity

◮ burning-in methods + de-correlation techniques

◮ great adaptability: tailored to the model moves

◮ manipulate several objects during one move: work of X.
Descombes

◮ link with RJMCMC: great adaptability, but difficult to state
convergence proofs, hence difficult to use ...



Perfect simulation algorithms

◮ the simulated chain indicates by itself whenever convergence
is reached: (van Lieshout and Stoica, 2006)

◮ parameter dependence: can be applied in practice only to a
restricted range of parameters

◮ neither change moves, nor tailored moves

◮ study existing algorithm: Fill algorithm, forward simulation
and simulated tempering

◮ challenging perspective: synthesis of both families of
algorithms → exact algorithms able to be tailored to the
model
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Statistical inference problems

Problem I: pattern detection

◮ observe the data d and find x “hidden”

◮ the model parameters are: hidden, modelled, unknown

◮ open problem: the does the detected pattern really exist ?

Problem II: parameter estimation

◮ observe the pattern x and find the model parameters θ able to
statistically reproduce it

◮ complete and incomplete data: pseudo-likelihood, Monte
Carlo maximum likelihood, EM, ABC Shadow

◮ open problem : sampling p(θ|x)



Pattern detection and characterisation

The pattern detection problem:

◮ a spatial data set is observed → pattern hidden in the data ?

◮ hypothesis : the pattern is the realization of a random process
(MRFs, marked point processes, etc.)

◮ the Gibbsian modelling framework → write a probability
density model

p(y|θ) = exp[−U(x|θ)]
c(θ)

with U : Ω → R+ the energy function, θ the model
parameters and c(θ) the normalizing constant

◮ parameters knowledge → prior density p(θ)

◮ the pattern estimator is

(x̂, θ̂) = arg max
(x,θ)∈Ω×Θ

{p(x|θ)p(θ)} = arg max
(x,θ)∈Ω×Θ

{p(x, θ)}.



Statistical pattern detection

Build the pattern model : probability density construction
conditionally on the data observation

p(x, θ|d) ∝ exp

[
−Ud(x|θ) + Ui(x|θ)

Z (θ)
+ log p(θ)

]

◮ interaction energy Ui(x|θ) → objects interactions (geometrical
shape of the structure)

◮ data energy Ud(x|θ) induced by the data field d → object
locations

◮ if the interaction parameters are unknown → prior model p(θ)



◮ role of the interaction and data energies :

a) b)

c) d)

Figure: Influence of the energy components of the model : a) original
image SPOT ; and results obtained using only : the data term (b), the
interaction term (c), the complete model (d)



◮ setting the model parameters :

a)

s1

s3

s2

b)
s1

s2
s3

Figure: Two segments configurations : a) the connectivity is favored over
alignment, b) connectivity and alignment have equivalent potentials.



Pattern estimator : the object configuration that maximises the
probability density

(x̂, θ̂) = arg min
Ω×Ψ

{
Ud(x|θ) + Ui(x|θ)

Z (θ)
− log p(θ)

}

with Ψ the model parameters space.

Simulated annealing : global optimisation technique

◮ sampling from p(x, θ)1/T while slowly T → 0

◮ convergence towards the uniform distribution on the
configuration subspace minimizing U(x, θ) (Stoica, Gregori
and Mateu, 2005)

◮ inhomogeneous Markov chain



Algorithm SA : x = Simulated Annealing (T0, δ,T )

1. choose an initial condition x0

2. for i = 1 to T do

{
xi = Update (xi−1,Ti−1, δ)
Ti = T0/[log(i) + 1]
}

3. return xT .

◮ slow algorithm → an alternative cooling schedule :

Tn+1 = cTn with c ∈ [0.95, 1[

◮ simulated tempering : improving mixing properties



Level sets estimators :

◮ visit maps for compact regions in W :

{T (w) > α} ⇒ {Tn(w) > α}

with T (w) = P(w ∈ X ) the probability that the structure hits
a point in W

◮ link with the capacity functional and volumic fraction



◮ two challenges : discretisation and Monte Carlo
approximations

◮ Vorob’ev expectation : the level set with volume equal to the
mean volume of the random set
◮ demands the knowledge of the behaviour of an unknown

random set, but still manageable in practice ...

◮ average behaviour of the pattern (fixed temperature)

◮ (Heinrich, Stoica and Tran, 2012) prove the convergence L1

of these estimators



Build the machine ...
Filaments detection in galaxies catalogues :
◮ interaction energy : Bisous model (random cylinders)
◮ data energy : local tests (density and spread of galaxies inside

a cylinder)

ily

iy

y

i+ky

i+k

i+k

l

w

ir

Figure: Locating interacting cylinders in a field of points.



Cluster detection in galaxies catalogues :

◮ interaction energy : Strauss and Area-interaction models
(random object : trunck of a cone + two hal-spheres)

◮ data energy : local minimum number of galaxies insid the
considered random object tests

Figure: Cross-section of the considered random object : two half-spheres
connected with a truncated cone. The object is fully determined by its
centre position, radius r and shape parameter t > 1. Shape parameter t
gives the aspect ratio of the object along and perpendicular to the line of
sight; for t = 1 the object is a ball. For a given r and t the height of the
truncated cone is defined as h = 2r(t − 1). The shape of the truncated
cone is defined by the lines of sights, which are indicated by dashed lines
on the figure. The observer is located at far left from the object.



Cluster detection in epidemiological data :

◮ interaction energy : Strauss and Area-interaction models
(random disks)

◮ data energy : local statistical test (the average score of the
farms covered by a disk)

a) b)

Figure: Data→ field of marked points : a) observed clusters, b) clusters
approximated by random disks.



Orbit determination for binary systems (1)

◮ interaction energy :

UI (θ) = log p(θ) =
7∑

i=1

log p(θi),

where θ = (a, e, i ,Ω, ω, τ,P) is the vector of orbital
parameters
◮ Jeffreys’ principle - non-informative independent priors
◮ our choice : uniform distributions over bounded intervals
◮ the intervals were chosen taking into account the a priori

knowledge of the objects to be detected
◮ perspective : introduce dependence of the parameters



Orbit determination for binary systems (2)

◮ data energy : sum of the distances between the observed
positions and the computed positions ; these last ones are
computed using the given model parameters

Ud(ϕ|θ) =
n∑

i=1

[
−
(
|xoi − xci |l + |yoi − y ci |l

)k/l]
=

where
◮ d = {(xoi , yo

i )}, (i = 1, 2, . . . , n) : the n observed positions of
the secondary asteroid with respect to the primary

◮ {(xci , y c
i )} : the computed positions at the same time i as the

corresponding observations, given the current θ
◮ k , l : pre-fixed model parameters

◮ k = l = 2 : Gaussian character of the data model
◮ k = l = 1 : Laplacian character of the data model

◮ perspective : model choice



Road network extraction in satellite and aerial images

(Stoica, Descombes, van Lieshout and Zerubia, 2002)

a) b)

Figure: Rural region in Malaysia : a) original image; b) obtained results.



Forest galleries : verifying the results
(Stoica, Descombes and Zerubia, 2004)

a) b)

c) d)

Figure: Forest galleries extraction : a) original image ; b) ground truth ;
c)-d) obtained results. Data provided by BRGM.



Filaments detection (1) : (Tempel, Stoica et. al., 2014)

Figure: Detected filamentary pattern (cylinder axes) in a small sample
volume within a pattern of galaxies (points).



Filaments detection (2)

(Tempel, Stoica et. al., 2014)
The movie, showing the MCMC in action is available at
:http://www.aai.ee/ elmo/sdss-filaments/



Cluster detection in cosmology : (Tempel, et al. and Stoica, 18)

Figure: The distribution of galaxies in supergalactic coordinates (points)
and the visit map obtained using the cluster detection process. The
thickness of the slice is 4 Mpc around SGX = 0. Red points show
galaxies in the Coma cluster while the other coloured points show
galaxies in some clusters with at least five members. The grey points
show all remaining galaxies.



Cluster detection in epidemiology : sub-clinical mastitis

data

(Stoica, Gay and Kretzschmar, 07)
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Figure: Disease data scores and coordinates for the year 1996 : a) disk
configuration obtained using the simulated annealing algorithm ; b) cover
probabilities.



Orbit determination (1) : (Kovalenko, Stoica and Emelyanov, 17)

Figure: Simulated observations (black points): ∆x and ∆y correspond to
relative positions of the secondary with respect to the primary. Lines
show a search for the optimal solution during SA algorithm.



Orbit determination (2) :

Figure: Resulting distributions of semi-major axis a, eccentricity e,
inclination i and longitude of the ascending node Ω (referenced to J2000
equatorial frame) obtained for simulated observations with the likelihood
model. Solid line represents the true parameter value. The doted lines
represent the 2.5% and 97.5% quantiles of the resulting sample.



Does the detected pattern really exist ?

Idea : the sufficient statistics of the model → morphological
descriptors of the shape hidden by the data

◮ turn the machine at constant temperature T = 1

◮ compute the average of the sufficient statistics

◮ compare with the maximum value obtained for the permuted
data

Sufficient statistics :

◮ Bisous model (pattern of connected cylinders) : free cylinders,
cylinders with one extremity connected, cylinders with both
extremities connected



Test for the filaments existence in galaxy catalogs

Permuted data : keeping the same number of galaxies while
spreading them uniformly (binomial point process)

Data
Sufficient statistics NGP150 NGP200 NGP250

n̄2 4.13 5.83 9.88
n̄0 15.88 21.19 35.82
n̄1 21.35 35.58 46.49

Simulated data (100 binomial catalogs)
Sufficient statistics NGP150 NGP200 NGP250

max n̄2 0.015 0.05 0.015
max n̄0 0.54 0.27 0.45
max n̄1 0.39 0.24 0.33



Test for the cluster existence epidemiological data

Permuted data : keeping the same farm locations while exchanging
the score disease

Results :

◮ sufficient statistics for the data from the year 1996 :

n̄(y) = 74.10, ν̄[Z (y)] = 312.46, n̄o = 555.08

◮ maximum values of the sufficient statistics for 100 simulated
data fields

n̄(y) = 2.36, ν̄[Z (y)] = 13.83, n̄o = 2.62

Interpretation : this test does not say if the pattern is well
detected, but it says that there is something to be detected ...



Orbit determination validation : position prediction for the
obtained parameter values

Figure: The calculated positions (black circles) are compared with given
observed positions (crosses) by the x and y coordinates on sky-plane.
Black bars denote the 2.5%-97.5% quantiles interval. Dotted line
corresponds to the calculated positions for the orbit, obtained with the
entire set of observations.



How similar are two data sets ?

Cosmology : compare the sufficient statistics for 22 mock
catalogues with the ones for the observation (Stoica, Martinez and
Saar, 10)

Discussion

◮ mock catalogues exhibit filaments

◮ mock filaments are generally shorter, more fragmented and
more dense

◮ Bisous model : good for testing the filamentary structure
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Figure: Comparison of the sufficient statistics distributions for the real
data (dark box plot) and the mock catalogues.
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Statistical inference problems - please do not forget the

suspenders

Problem I: pattern detection

◮ observe the data d and find x “hidden”

◮ the model parameters are: hidden, modelled, unknown

◮ open problem: the does the detected pattern really exist ?

Problem II: parameter estimation

◮ observe the pattern x and find the model parameters θ able to
statistically reproduce it

◮ complete and incomplete data: pseudo-likelihood, Monte
Carlo maximum likelihood, EM, ABC Shadow

◮ open problem : sampling p(θ|x)



Parameter estimation based on pseudo-likelihood

The pseudo-likelihood of a marked point process X with conditional
intensity λθ(ζ; x) observed on the bounded set W is expressed as

PLW (θ; x) =

=

[∏

xi∈x

λθ(xi ; x)

]
exp

[
−
∫

W×M

λθ((w ,m); x)ν(dw)νM (dm)

]
.

The pseudo-likelihood estimator is given by the solution of the
equation :

∂PLW (θ; x)

∂θ
= 0



Remarks :

◮ the PL is concave for exponential models

◮ no normalising constant needed

◮ it ”amplifies” the interaction weights: check the formula - for
a Strauss process the interactions are counted twice

◮ consistency and asymptotic normality of the estimator: under
the assumption of a model, considering a realisation observed
within a finite window that increases towards Rd , the PL
estimator converges towards the true parameters used to
produce the observation on the “whole” window

◮ see (Winkler, 2003), (Jensen and Møller, 1991) and the cited
references



◮ it can be used as a rather “good” initial condition for other
more elaborate methods
◮ ”good” results for mild interactions: (Mateu and Montes,

2001)

◮ no control of the estimation obtained from a finite window:
one cannot say how far the obtained result is from the true
parameters
◮ exception: Poisson process - in this case the pseudo-likelihood

is the true likelihood

◮ easy to be implemented :
◮ this was the motivation to introduce it in the middle of 70s

(Besag, 1975)
◮ see (Baddeley, Rubak and Turner, 2016) for implementation

details within the spatstat package

→ Exercicse 19 + Exercise 20



Example application: fitting a point process to real data

Pseudo-likelihood profile analysis : the range parameters
>radius = data.frame(r=seq(0.05,0.11, by=0.01))

>pradius = profilepl(radius, Strauss, japanesepines)

>plot(pradius,main="Strauss : PL analysis")
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Fitting the model to the pattern:
> ppm(japanesepines, 1,Strauss(r=0.08),rbord=0.08)

Stationary Strauss process

First order term: beta 77.93567

Interaction: Strauss process interaction distance:

0.08

Fitted interaction parameter gamma: 0.7953



Monte Carlo Maximum likelihood estimation

Exponential family models:

◮ very general framework

◮ the point processes models that were presented are given by

p(x|θ) = h(x|θ)
Z (θ)

=
exp〈t(x), θ〉

Z (θ)

where h(x|θ), t(x) and θ represent the un-normalized
probability density w.r.t. the standard Poisson process, the
sufficient statistics vector and the model parameters vector,
respectively. The normalising constant Z (θ) is unknown.



The configuration x is entirely observed, hence the log-likelihood
with respect a known parameter ψ can be written as follows :

l(θ) = 〈t(x), θ − ψ〉 − log
Z (θ)

Z (ψ)

It is easy to check, that the normalizing constants ratio is

Z (θ)

Z (ψ)
= E [exp〈t(X), θ − ψ〉] ,



since we have

Z (θ)

Z (ψ)
=

1

Z (ψ)

∫

Ω
h(x|θ)dµ(x)

=
1

Z (ψ)

∫

Ω
h(x|θ)h(x|ψ)

h(x|ψ)dµ(x)

=

∫

Ω

h(x|θ)
h(x|ψ)

h(x|ψ)
Z (ψ)

dµ(x)

= E

[
h(X|θ)
h(X|ψ)

]



The Monte Carlo approximation of the normalizing constants ratio
gives:

Z (θ)

Z (ψ)
≈ 1

n

n∑

i=1

exp〈t(Xi), θ − ψ〉,

where X1,X2, . . . ,Xn are samples obtained from p(y|ψ).
Hence, the Monte-Carlo counterpart of the log-likelihood is :

ln(θ) = 〈t(x), θ − ψ〉 − log

(
1

n

n∑

i=1

exp〈t(Xi), θ − ψ〉
)
.



Theorem
The log-likelihood of an exponential family model is a convex
function.

◮ proof : see (Monfort 1997, Thm.3, pp. 61)

◮ ln(θ) → l(θ) almost sureley

◮ all these suggest that local optimisation procedures applied to
ln(θ) may give interesting results

→ Exercise 21 + Exercise 22



MCMC local optimisation procedures

The gradient of the MCMC log-likelihood is

∇ln(θ) = t(x)− En,θ,ψ[t(X)]

where

En,θ,ψ[t(X)] =

∑n
i=1 t(Xi) exp〈t(Xi), θ − ψ〉∑n

i=1 exp〈t(Xi ), θ − ψ〉
that is the Monte Carlo importance sampling approximation
of Eθt(X).



Similarly, the Hessian can be computed too:

−∇2ln(θ) = Varn,θ,ψ[t(X)]

where

Varn,θ,ψ[t(X)] = En,θ,ψ[t(X)t(X)
t ]− En,θ,ψ[t(X)]En,θ,ψ[t(X)

t ].



Newton-Raphson method:

θk+1 = θk − [∇2ln(θk)]
−1∇ln(θk) (11)

for k = 1, 2, . . .,

◮ ln(·) is computed using n samples from p(x|ψ)
◮ the computation of the gradient and Hessian inverse is

numerically unstable

◮ useful only if the initial value is close enough from the solution



Iterative gradient method:

{
ln(θk + ρ(θk)∇ln(θk)) = maxρ∈R ln(θk + ρ∇ln(θk))
θk+1 = θk + ρ(θk)∇ln(θk)

where ρ(θk) is the optimal step (Descombes et al. ’99, Stoica ’01).

◮ re-sampling if ‖ θk − ψ ‖> threshold

◮ obtain a reference value θ0 close enough to the maximum
likelihood estimator



Stochastic gradient:

θk+1 = θk + ǫk [t(x)− t(Xk)]

where ǫk > 0 is a decreasing sequence while Xk is a sample of
p(x|θk)
◮ very simple, but finding an optimal sequence {ǫk} is an open

problem

◮ L. Younes, G. Winkler : Markov random fields

◮ R. Moyeed and A. Baddeley : point processes



Asymptotic results MCMCML estimation

The random variable
√
n(θ̂n − θ̂) whenever n → ∞, it converges in

distribution towards a normal random variable of zero mean and
variance I (θ̂)−1ΓI (θ̂)−1 :

√
n(θ̂n − θ̂) → N (0, I (θ̂)−1ΓI (θ̂)−1).

◮ the matrix
I (θ̂) = Var

θ̂
[t(X)] = −∇2l(θ̂)

is the Fisher information of θ̂

◮ the matrix Γ is the matrix of the asymptotic covariance of the
normalised Monte Carlo gradient

√
n∇ln(θ̂)



◮ the variance of the components of θ̂ − θ0 can be estimated by

taking the diagonal elements of the inverse of −∇2ln(θ̂n)
◮ it represents the error between the maximum likelihood

estimate and the true model parameters

◮ the variance of the components of
√
n(θ̂n − θ̂) can be

estimated by taking the diagonal elements of I (θ̂)−1ΓI (θ̂)−1

◮ it represents the error between the maximum likelihood
estimate and its Monte Carlo counterpart

◮ refer to (Monfort, 1997), (Geyer, 1999) and (van Lieshout and
Stoica, 2003) for the computation of these matrices

→ depending on the schedule → blackboard: incomplete data
observation - EM algorithm



MCML example

Candy model: (van Lieshout and Stoica, 2003)

 

 

0 50 100 150 200 250

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0 Model parameters

θf = −8.5
θs = −3.0
θd = 2.5
θo = −2.5
θr = −2.5

Sufficient statistics

nf = 4
ns = 34
nd = 63
no = 12
nr = 9

Figure: Realization (left) of the reference model given by the parameters
in the middle table. The observed values of the sufficient statistics are
listed at right.



Results: estimation of the parameters from the reference
configuration given by the Candy model

Initial param-
eters

Iterative
method

Monte Carlo
MLE

θif = −9.5 θ̂0f = −8.37 θ̂nf = −8.32

θis = −4.0 θ̂0s = −2.74 θ̂ns = −2.73

θid = 1.5 θ̂0d = 2.46 θ̂nd = 2.47

θio = −3.5 θ̂0o = −2.13 θ̂no = −2.17

θir = −3.5 θ̂0r = −2.42 θ̂nr = −2.42

Asymptotics : estimation errors (central limit theorems available)

Asymptotic standard MCSE
deviation of MLE

0.51 0.002
0.23 0.003
0.17 0.001
0.30 0.002
0.31 0.005



Log-likelihood ratio approximation:
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Figure: Monte Carlo approximation of the log likelihood function. The X
axis represents the variation of a single component. The Y axis
represents the values of the Monte Carlo log likelihood with all other
components of θ̂0 fixed : a - θf ∈ [−11,−7], b - θs ∈ [−5,−1], c -
θd ∈ [1, 5], d - θo ∈ [−4.5,−0.5], e - θr ∈ [−4.5,−0.5].



Parameter estimation via posterior sampling

◮ let p(θ|y) be the conditional distribution of the model
parameters given the patten

p(θ|y) = exp[−U(y|θ)]p(θ)
Z (y)c(θ)

with p(θ) the prior density for the model parameters and Z (y)
the normalization constant

◮ the posterior law is defined on Θ a compact region in Rm ;
the parameter space Θ is endowed with the Borel algebra TΘ



◮ the parameter estimator is

θ̂ = argmax
θ∈Θ

{p(θ|y)}

◮ optimisation procedure : requires sampling p(θ|y)
◮ sampling the posterior law is not straightforward → requires

the evaluation of the ratio c(θ)/c(ψ)

◮ if p(θ) is the uniform distribution over Θ then θ̂ is the
maximum likelihood estimator

Remark: the model parameters taken into account by the posterior
distribution are the “interaction” parameters. And not the “range”
parameters ...



Sampling posterior laws: key element for parametric inference

◮ theoretical solution: auxiliary variable method given (Møller,
Pettitt, Reeves and Berthelsen, 2006)
◮ choice of the auxiliary variable density - behaviour of the

simulated chain
◮ exchange algorithms : (Murray et al.,2006), (Liang, 2010)

◮ practical solution: Approximate Bayesian Computation
(Marin, Robert, Pudlo, Biau, Blum, etc.)
◮ useful if enough samples are produced ”close” to the observed

pattern y

◮ ABC sampling strategies for point processes : Cox,
determinantal and Gibbs
◮ (Shirota and Gelfand, 2017), (Vihr, Møller and Gelfand,2021)
◮ lack of practical and theoretical control and limited models

(marked and multiple interactions)



Algorithm ABC: assume the observed pattern is y, fix a tolerance
threshold ǫ and an integer value n.

1. For i = 1 to n do
◮ Generate θi according to p(θ).
◮ Generate xi according to the probability density

p(x|θi ) = exp[−U(x|θi )]
c(θi )

2. Return all the θi ’s such that the distance between the
statistics of the observation and those of the simulated
pattern is small, that is

d(t(y), t(xi )) ≤ ǫ



Observed statistics : t(y)

Parameters : theta

Simulated statistics : t(x)

Figure: Graphical representation of the outputs of an ABC algorithm.

Theoretical result

◮ (Blum, 2009): gives the bias and the variance of the posterior
distribution estimate

◮ (G. Biau, F. Cérous and A. Guyader , 2015): give asymptotic
features of the outputs of a slightly different algorithm

◮ ideas: kernel and k−nearest neighbour estimation



Remarks:

◮ exact sampling from p(x|θ) is needed
◮ choice of the statistics vector

◮ exponential family models → the sufficient statistics

◮ appropriate setting :
◮ distance d
◮ precision parameter ǫ
◮ number of neighbours kn and bandwidth parameter hn

Synthesis:

◮ ABC algorithms are useful if enough samples xi are ”close” to
the observed pattern y



ABC Shadow algorithm

Key points

◮ need: an algorithm with outputs ”close” enough to the
posterior distribution

◮ tool: build a Markov chain evolving ”close” to an equilibrium
regime given by p(θ|y)

◮ plan : use the auxiliary variable method ideas



Ideal MCMC sampling of the posterior: general MH algorithm

◮ assume the system is in the state θ

◮ choose a new value ψ according to a proposal density
q(θ → ψ)

◮ the value ψ is accepted with probability

αi(θ → ψ) = min

{
1,

p(ψ|y)p(ψ)
p(θ|y)p(θ)

q(ψ → θ)

q(θ → ψ)

}



◮ consider the proposal density

q(θ → ψ) = q∆(θ → ψ|x) = f (x|ψ)/c(ψ)
I (θ,∆, x)

1b(θ,∆/2){ψ}

with
◮ x : outcome of a marked point process driven by the

probability density p(x|υ) where υ is any value in Θ.
◮ pattern detection context : f (x|ψ) = exp[−U(x|ψ)]
◮ ∆ > 0 : control parameter
◮ 1b(θ,∆/2){·} is the indicator function over b(θ,∆/2), which is

the ball of centre θ and radius ∆/2
◮ I (θ,∆, x) =

∫
b(θ,∆/2)

f (x|φ)/c(φ) dφ.
◮ this choice guarantees the ideal chain to be uniformly ergodic

and avoids the evaluation of the ratios c(θ)/c(ψ)

◮ but, it requires the computation of integrals I (θ,∆, x) ...

→ blackboard : drawing



Shadow chain: approximation of the ideal chain

Theorem : if p(x|θ) is a continuously differentiable function in θ

◮ For any fixed θ ∈ Θ and A ∈ TΘ, we have

lim
∆→0+

∫

A

|q∆(θ → ψ)− U∆(θ → ψ)|dψ = 0

◮ For any fixed θ ∈ Θ, we have

lim
∆→0+

sup
ψ∈Θ

∣∣∣∣∣∣
q∆(θ → ψ|x)
q∆(ψ → θ|x) −

f (x|ψ)
c(ψ) 1b(θ,∆/2)(ψ)

f (x|θ)
c(θ) 1b(ψ,∆/2)(θ)

∣∣∣∣∣∣
= 0

uniformly in θ ∈ Θ, with

◮ V∆ : the volume of the ball b(θ,∆/2)

◮ U∆ = 1
V∆

1b(θ,∆/2){ψ} : uniform probability density



Application: simulate the shadow chain that approximate the ideal
chain

◮ first part : use U∆(θ → ψ) instead of q∆(θ → ψ) for
proposing new values

◮ second part : approximates the computation of the proposal
density ratio while simplifying the normalizing constant ratio

◮ the shadow Markov chain accepts new states with the
probability :

αs(θ → ψ) = min

{
1,

p(ψ|y)p(ψ)
p(θ|y)p(θ) ×

f (x; θ)c(ψ)1b(ψ,∆/2){θ}
f (x;ψ)c(θ)1b(θ,∆/2){ψ}

}



Corollary: the acceptance probabilities of the ideal and shadow
chains are uniformly as closed as desired whenever △ → 0+

Proposition : Let Pi and Ps be the transition kernels for the ideal
and the shadow Markov chains using a general ∆ > 0 and a
configuration x ∈ Ω. Then, for every ǫ > 0 and every n ∈ N, there
exists ∆0 = ∆0(ǫ, n) > 0 such that for every ∆ ≤ ∆0

|P(n)
i (θ,A)− P

(n)
s (θ,A)| < ǫ

uniformly in θ ∈ Θ and A ∈ TΘ.



Algorithm ABC Shadow: assume the observed pattern is y and fix
values for ∆ and n and the current state θ0

1. Generate x according to p(x|θ0)
2. For k = 1 to n do

◮ Generate a new candidate ψ following U∆(θk−1 → ψ).
◮ The new state θk = ψ is accepted with probability

αs(θk−1 → ψ), otherwise θk = θk−1

3. Return θn



Remarks:

◮ if several samples are needed, re-start the procedure for the
same ∆ and n, with θ0 = θn.

◮ depending on ∆, the algorithm approaches the equilibrium
regime of the ideal chain :

‖P(n)
s (θ,A)− π(A)‖ ≤ M(x,∆)ρn + ǫ.

with π(A) =
∫
A
p(θ|y)dθ ; M and ρ : ergodicity parameters of

the ideal chain

◮ caution : this is not convergence



Application: sampling the posterior of a Gaussian model

The posterior of a Normal model with mean θ1 and variance θ2 is

p(θ1, θ2|y = Y(ω)) ∝
exp

(
θ1
θ2
Y(ω)− Y2(ω)

2θ2

)

c(θ1, θ2)
p(θ1, θ2)

with

◮ y = Y(ω): observation issued from the supposed model

◮ t(y) = (Y(ω),Y2(ω)): the sufficient statistics vector

◮ if the sample size is m then:
t(y) =

(∑m
i=1Yi(ω),

∑m
i=1Y

2
i (ω)

)



Experiment:

◮ simulate 1000 i.i.d. Normal r. v.’s with parameters
θ = (µ, σ2) = (2, 9)

◮ t(y) = (1765.45, 12145.83)

◮ p(θ1, θ2) the uniform distribution over [−100, 100] × [0, 200]

◮ compare 1000 samples of the MH and ABC Shadow
algorithms

◮ ∆ = (0.005, 0.025) and n = 500

Summary statistics for Normal posterior sampling

Algorithm Q5 Q25 Q50 θ̄ Q75 Q95

MH θ1 1.60 1.69 1.75 1.76 1.82 1.92
ABC θ1 1.60 1.70 1.76 1.76 1.82 1.91

MH θ2 8.45 8.80 9.07 9.08 9.33 9.76
ABC θ2 8.35 8.78 9.03 9.06 9.33 9.83

Table: Empirical quantiles and mean for the posterior of the Normal
model.
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Figure: Boxplots and qqplots of the MH and ABC Shadow outpts.



1.5 1.6 1.7 1.8 1.9 2.0

8
.0

8
.5

9
.0

9
.5

1
0

.0

MH Sampler: sampling path

Theta 1
T

h
e

ta
 2

1.5 1.6 1.7 1.8 1.9 2.0 2.1

8
.0

8
.5

9
.0

9
.5

1
0

.0

ABC Algorithm: sampling path

Theta 1

T
h

e
ta

 2

0 200 400 600 800 1000

1
.5

1
.6

1
.7

1
.8

1
.9

2
.0

MH Sampler − first parameter

Sampling time

T
h

e
ta

 1

0 200 400 600 800 1000

1
.5

1
.6

1
.7

1
.8

1
.9

2
.0

2
.1

ABC Algorithm − first parameter

Sampling time

T
h

e
ta

 1

Figure: Sample path for the Normal posterior. Left colum: the MH
algorithm results - from top to bottom the joint parameter path and the
θ1 time series. Right column: the ABC Shadow procedure - from top to
bottom the joint parameter path and the θ1 time series.



Application - Strauss model: (Strauss, 1975), (Kelly and Ripley,
1976)

p(x|θ) ∝ βn(x)γsr (x) = β, r > 0, γ ∈ [0, 1]

= exp [n(x) log β + sr (x) log γ]

= exp〈t(x), θ〉.
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Figure: Strauss model realisations for different parameter values : a)
γ = 1.0, b) γ = 0.5 and c) γ → 0.0.



◮ a sample made of m independent point patterns is observed.

◮ it is further assumed that the observed patterns are
realisations of a Strauss model with parameters r and θ.

◮ the range parameter is considered known

◮ it is easy to observe that the maximum likelihood estimate θ̂
satisfies the equation

1

m

m∑

i=1

t(yi)− E
θ̂
t(X) = 0

with y1, . . . , ym the observed point patterns forming the
sample.



Numerical experiments: verification of the ABC Shadow algorithm

◮ domain W = [0, 1] × [0, 1], range r = 0.1

◮ simulate 1000 realisations of the model θ = (4.6,−0.69) using
the CFTP algorithm

◮ the observed empirical means of the sufficient statistics
t̄(y) = (45.30, 17.99)

◮ ∆ = (0.01, 0.01), m = (200, 200), n = 106

◮ p(θ): uniform distribution over the parameter domain
Θ = [0, 7] × [−7, 0]



Posterior approximation for the Strauss process using the ABC
Shadow algorithm:
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Figure: Parametric inference for the Strauss process throught posterior
approximation: joint distribution (a), marginal distributions (b,c) and
histograms (d,e). The approximated MAP is (4.68,−0.73).



Comparison of the approximated MAP obtained via the ABC
Shadpw with the approximated MLE computed via the stochastic
gradient:
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Figure: Estimation of parameters using the stochastic gradient algorithm:
joint dynamics of the parameters (a), marginals (b,c). The approximated
MLE is (4.68,−0.75).



Shadow Simulated Annealing: parameter estimation

(Stoica, Deaconu, Hurtado, Philippe, 2021)

Fix ∆ = ∆0, T = T0, m and k∆, kT : R+ → R+ two positive
functions. Assume the observed pattern is y and the current state
is θ0.

1. Generate x according to p(x|θ0) = f (x|θ0)
c(θ0)

.

2. For k = 1 to m do
◮ Generate a new candidate ψ following the density

U∆(θk−1 → ψ) defined by

U∆(θ → ψ) =
1

V∆
1b(θ,∆/2){ψ},

representing the uniform probability density over the ball
b(θ,∆/2) of volume V∆.



◮ The new state θk = ψ is accepted with probability given by

αs(θk−1 → θk) =

= min

{
1,

[
p(θk |y)
p(θk−1|y)

× f (x|θk−1)

f (x|θk

]1/T
×

1b(θk ,δ/2){θk−1}
1b(θk−1,δ/2){θk}

}

= min

{
1,

[
f (y|θk)p(θk)

f (y|θk−1)p(θk−1)
× f (x|θk−1)

f (x|θk)

]1/T}

otherwise θk = θk−1.

3. Return θm

4. Stop the algorithm or go to step 1 with θ0 = θm, δ0 = kδ(δ)
and T0 = kT (T ).



Discussion of the convergence properties

◮ key idea: build a Shadow Simulated Annealing process while
varying the control parameter of the ABC Shadow dynamics
in order to obtain a convergent algorithm

◮ key tool: Dobrushin’s coefficient (Iosifescu and Theodorescu,
1969)

◮ principle of the classical SA algorithm result: the iteration of
the transition kernel of an inhomogeneous Markov chain with
a slow varying Dobrushin coefficient converges weakly towards
the uniform distribution over the subspace of configurations
containing the global optima of the function of interest
(Haario and Saksman, 1991, 1992)



Convergence result
Let {θj , j ≥ 1} be a realisation of the SSA process. Then there
exists a sequence {∆j = ∆j(ε,m), j ≥ 1} corresponding to each θj
such that for j ≥ jmax(ε,m)

{θj , j ≥ jmax} ⊂ b(θopt , ε)

where θopt is the global optimum.

We have

∆j =
K (xj ,Tj ,m)

j
(12)

with K (xj ,Tj ,m) a constant depending on the auxiliary variable xj ,
the temperature Tj and the number of iterations m.

Interpretation: to a decreasing sequence of balls around the
problem solution, it is possible to associate a sequence of ∆
parameters in order to get as close as desired to the desired global
optimum.



Simulated data: marked Gibbs point processes
Homogeneous Poisson process:

p(y|θ) ∝ exp〈θn(y)〉 (13)

with n(y) the observed number of points and θ the intensity
parameter
◮ W = [0, 1]2, the observed statistics n(y) = 100
◮ the maximum likelihood estimate of the intensity is
θ̂ = log(100) ≈ 4.6

◮ the posterior with a uniform prior is equivalent with a
restriction of the likelihood function
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◮ consider the following prior for θ:

p(θ) =
1√

0.045π

{
0.6 exp

[
−(θ − 4.3)2

0.0225

]
+ 0.4 exp

[
−(θ − 4.9)2

0.0225

]}

◮ the maximum likelihood estimate of the intensity is θ̂ = 4.46

◮ the likelihood function in this case is not concave
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Figure: Log of the posterior of an homogeneous Poisson point process
with non-uniform prior.
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Candy model:

p(y|θ) ∝ exp〈θdnd (y) + θsns(y) + θf nf (y) + θrnr (y)〉 (14)

with

◮ t(y) = (nd (y), ns(y), nf (y), nr (y)) : sufficient statistics

◮ θ = (θd , θs , θf , θr ) : model parameters
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Figure: Realisation of the Candy model.



Experiment :

◮ domain W = [0, 3] × [0, 1], segment length l = 0.12,
connection range rc = 0.01, curvature parameters
τc = τr = 0.5 radians

◮ simulate 1000 realisations of the model θ = (10, 7, 3,−1)
using an Adapted MH algorithm

◮ the observed empirical means of the sufficient statistics
t̄(y) = (51.10, 101.06, 19.97, 72.89)

◮ ∆0 = (0.01, 0.01, 0.01, 0.01), T0 = 104, m = 500, n = 106

◮ cooling schedules: Tn = kTTn−1, ∆n = k∆∆n−1 with
kT = 0.9999 and k∆ = 0.999995

◮ p(θ): uniform distribution over the parameter domain
Θ = [2, 12]3 × [−7, 0]
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Figure: SSA Candy parameter estimation: algorithm dynamics. Maximum
of the kernel estimated density is θ̂ = (10.012, 7.029, 2.994,−1.011).



Summary statistics for SSA Candy estimation

Algorithm Q25 Q50 Q75

SSA log γd 9.975 10.01 10.04
SSA log γs 6.985 7.020 7.045
SSA log γf 2.968 2.999 3.032
SSA log γr -1.034 -1.012 -0.991

Table: Empirical quartiles for the SSA Candy model estimation.



Real data: galaxies distribution knowing the filaments

Figure: Galaxies positions (blue) and the induced filaments pattern or
spines (green).

(Hurtado, Stoica, et al., 2021)



Proposed model: inhomogeneous interacting point process

Such a model can be represented by the point process given by the
following probability density

p(y|θ,F ) ∝ β
n(y)
1 β

dF (y)
2 γ−ar (y) (15)

with the model parameters vector given by

θ = (log β1, log β2, log γ),

and the sufficient statistics vector

t(y) = (n(y), dF (y), ar (y)).



The model works as it follows:

◮ the parameter β1 controls the number of galaxies n(y)
◮ the parameter β2 controls the distance to the filamentary

pattern, that is

dF (y) = −
n(x)∑

i=1

d(yi ,F )

with d(yi ,F ) the minimum distance from the galaxy position
yi to the spines pattern F

◮ the parameter γ controls the volume occupied by the galaxy
pattern, that is

ar (y) =
3A(y)

4πr3
,A(y) = ν[

n(y)⋃

i=1

b(yi , r)]

where b(y , r) is the ball centred in y with radius r and A(y) is
the volume of the object resulting from the set union of the
spheres of radius r and that are centred in the points given by
the configuration y



Computing the data for the SSA algorithm:

Data for the galaxy pattern

r 0.5 1 1.5 2 2.5 3 3.5

n(y) = 1024, dF (y) = −∑n(y)
i=1 d(yi ,F ) = −1180.05

ar (y) 724.29 484.01 357.16 263.10 195.08 142.86 105.30

Table: The sufficient statistics computed for the observed galaxy pattern,
depending on the range parameter r .



SSA algorithm’s outputs:
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Figure: SSA outputs for the MAP estimates computation of the
inhomogeneous area-interaction model parameters fitted to the
considered SDSS sample. Right column: box plots of SSA algorithm
outputs for each parameter depending on the interaction radius. Left
column: the time series of the outputs of the SSA algorithm for r = 2.



Results verification: aymptotics

Asymptotic errors for the SSA estimates

r σlog β1 σMC
log β1

σlog β2 σMC
log β2

σlog γ σMC
log γ

0.5 0.04 1e-4 0.03 7e-5 0.07 2e-4
1 0.03 1e-4 0.03 9e-5 0.09 5e-4
1.5 0.05 1e-4 0.04 1e-4 0.12 1e-3
2 0.05 1e-4 0.04 2e-4 0.17 2e-3
2.5 0.05 2e-4 0.04 2e-4 0.24 5e-3
3 0.05 2e-4 0.04 5e-4 0.43 0.016
3.5 0.05 2e-4 0.04 9e-4 0.66 0.039

Table: Asymptotics errors for the SSA MAP estimates of the model (15)
fitted to the considered cosmological sample. For each corresponding
radius a model was fitted, and the asymptotic errors were computed for
each model. For the computation of the MCSE 15× 103 samples from
the fitted model were used.



Results verification: statistical tests

◮ the SSA estimate for r = 2 is

θ̂ = (l̂og β1, l̂og β2, l̂og γ) = (−0.33, 0.98, 4.57)

◮ firstly, a Student like test was carried on to check whether the
mean of the posterior distribution is different from the SSA
algorithm output

◮ secondly, another Student like test was conducted in order to
verify whether the obtained parameter values are significantly
different from 0.



Tests results:

◮ sampling using the posterior distribution was carried on using
the ABC Shadow algorithm (Stoica et al., 2017)

◮ first test: the smallest p-value was 0.77

◮ second test: the p-value corresponding to log β1 was 0.16 →
this parameter is not significatif ; all the other p-values were
smaller than 10−5
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Figure: ABC Shadow outputs for the approximate posterior sampling of
the inhomogeneous area interaction model fitted to the SDSS sample
(the range parameter is r = 2). The obtained MAP estimate is

θ̂ = (−0.29, 0.95, 4.57).



Synthesis parameter estimation

Pseudo-likelihood estimation:

◮ easy to compute

◮ good alternative whenever nothing else can be done

◮ consistency and central limit theorems: difficult to interpret

◮ no properties concerning the sufficient statistics of the model
using the PL estimates of the parameters

◮ work of J. Mateu and P. Montes: comparison with maximum
likelihood



Monte Carlo maximum likelihood:

◮ general statistical framework

◮ numerically unstable → but re-sampling is guaranteed to
convergence, since the log-likelihood is convex

◮ the asymptotics are related to the true model

◮ property: the expectation of the sufficient statistics computed
by the model with the ML parameters equals the observed
sufficient statistics



ABC Shadow parameter estimation :

◮ approximate algorithm that samples ”close” to the posterior:
reliable numerical results

◮ theoretical control: convergence of the Shadow Simulated
Annealing algorithm (Stoica et al., 21)

◮ relatively low computational cost: MCMCML needs
re-sampling

◮ no theoretical need for exact simulation

◮ direct statistical tests using the estimated posterior

◮ perspectives: incomplete data + link with existing methods

◮ open problems: range parameters

◮ application proved: astronomy, network sciences, geology -
(Hurtado, Stoica et al., 21), (Laporte, Stoica et al.,22),
(Bonneau, Stoica and Caumon, 25)



Model validation: residual analysis for point processes
Let X be a locally stable marked point process on W ×M.

h−Innovations: for nonnegative functions h and A ⊆ W ×M

I (A, h, λ) =
∑

xi∈YA

h(xi ,X \ xi)−
∫

A

λ(η;X)h(η,X)(ν × νM)(dη)

◮ assuming the sum and the integral in the definition have finite
expectations, the Georgii-Nguyen-Zessin formula gives

EI (A, h, λ) = 0

◮ I is a signed measure

◮ △I (xi ) = h(xi ,X \ η) : the innovation increment (’error’)
attached to a point η ∈ X

◮ dI (η) = −λ(η;X)h(η,X) : the innovation increment attached
to a background location η ∈ W ×M



h−Residuals: for h ≥ 0 functions and A ⊆ W ×M

R(A, ĥ, θ̂) = I (A, ĥ, λ̂)

=
∑

xi∈xA

ĥ(xi , x \ xi)−
∫

A

λ̂(η; x)ĥ(η, x)(ν × νM)(dη)

since the function h may depend on the model, ĥ denotes an
estimate.
Application idea :

◮ consider a parametric model for a marked point process X
observed within A

◮ estimate the model parameters (maximum likelihood,
pseudo-likelihood)

◮ expect the residuals R(A) to be close to 0 if the model is
appropriate



Building residuals: several possible choices for h

◮ raw residuals h(η, x) = 1

R(A, 1, θ̂) = n(x ∩ A)−
∫

A

λ̂(η; x)(ν × νM)(dη)

◮ inverse residuals h(η, x) = 1/λ(η; x) (equivalent with the
Stoyan-Grabarnik diagnostic)

R(A,
1

λ̂
, θ̂) =

∑

xi∈xA

1

λ̂(xi ; xA)
−
∫

A

1{λ̂(η; x) > 0}(ν × νM)(dη)



◮ Pearson residuals h(η, x) = 1/
√
λ(η; x) (analogy with Poisson

log-linear regression)

R(A,
1√
λ̂
, θ̂) =

∑

xi∈xA

1√
λ̂(xi ; xA)

−
∫

A

√
λ̂(η; x)(ν × νM)(dη)

Remark : the inverse and Pearson residuals we need
λθ(x)(xi ; x) > 0 for all xi ∈ x for any pattern x, while
λθ(x)(η; x) = 0 is allowed for η /∈ x



Properties:

◮ expectation

E

[
R(A, ĥ, θ̂)

]

=

∫

A

E

[
h
θ̂(X∪{η})

(η,X)λ(η,X) − h
θ̂(X)

(η,X)λ
θ̂(X)

(η,X)
]

◮ variance: more complicate structures but very nice formulas
for Poisson processes (Baddeley, Moller and Pakes 2008)

◮ these residuals do not have independent increments → the
raw innovations for Markov point processes are conditionnaly
independent and uncorrelated (Baddeley, 2005)

◮ consistency and asymptotic normality for the residuals of
stationary Gibbs point processes (Coeurjolly and Lavancier,
2013)



Application: smoothed residuals to test several models for
japanesepines datasets

◮ Strauss process : only repulsion

◮ area-interaction process : repulsion or attraction (competition
for ressources)
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Figure: Raw residual analysis, from left to right : Strauss(r=0.08) and
AreaInt(r=0.09)



◮ R code:
>mjp=ppm(japanesepines, 1,Strauss(r=0.08),rbord=0.08)

>rjp=residuals(mjp,type="raw") >plot(rjp)

QQ plots: comparison of empirical quantiles of the smoothed
residuals with the expected quantiles under the estimated model

◮ interpretation in the spirit of K and F functions

◮ if the data pattern is more clustered than the model: heavier
tails especially in the left-hand tail

◮ if the data pattern is more inhibited than the model: lighter
tails especially in the right-hand tail

◮ R code : qqplot.ppm(rjp, type="raw")
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Figure: Q-Q plot analysis, from left to right : Strauss(r=0.08) and
AreaInt(r=0.09)

◮ Strauss(r=0.08): over-estimates repulsion, but
under-estimates close attraction

◮ AreaInter(r=0.09): very well for the close attraction,
underestimate the repulsion

◮ the best model for the entire data set : polynomial
inhomogeneity and soft-core interaction



Remarks :

◮ the theory is wonderful

◮ but the numerical results are obtained using the PL estimators
...

◮ see the remark of J. Besag

◮ visualisation of residuals difficult for higher dimensions

◮ the qq plots very informative → link with the central limit
theorems for computing confidence intervals

◮ open question: validating pattern detection result ... ?

→ Exercise 23
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Conclusions and perspectives (1)
Pattern detection: inference related to the distribution of the
pattern knowing the parameters p(x|θ)
◮ Markov point processes allow statistical and morphological

description of the detected patterns
◮ good synthesis properties: compute moments and integrals
◮ limitations: models remain just models ...

Figure: Creation by Laurent Ballesta. Winner of the Wildlife
Photographer of the Year 2021. Royal Ontario Museum.



Conclusions and perspectives (2)

Pattern characterisation: inference related to the distribution
p(θ|x) of the parameters knowing the pattern

◮ ABC and SSA Shadow algorithms: alternative option
whenever exact simulation is not available

◮ theoretical control: equivalent with classical stochastic
approximation methods (stochastic gradient)

◮ pros: complementary tools, not traped in local minima, more
freedom regarding the choice of priors

◮ and cons: range parameters, models remain just models ...

Simultaneous pattern detection and characterisation: since
sampling from p(y|θ) and p(θ|y) is possible, what about sampling
p(y, θ) ?



Current projects:

◮ three on-going phd thesis: 1 math (N. Gillot) + 1 maths and
geology (A. Fratani) + 1 maths and cosmology (F. Nørby)

◮ Horizon European project with Estonian, Dutch and German
cosmologists: autumn 2024 - autumn 2027

◮ DRlib: C++ library for marked point processes based inference
https://gitlab.univ-lorraine.fr/labos/iecl/drlib



Some perspectives:

◮ open problems: missing data, exact simulation, number of
objects in a configuration, dimensionality, dynamical behaviour

◮ develop the research directions: modelling, simulation,
statistical inference within each new context

◮ applications domains but not only: astronomy, geology,
computer science, entreprises, etc.

◮ new research projects together ? : parameter estimation,
model validation, detection and characterisation of latent
structures

Thank you very much for your invitation. Questions, comments,
remarks ?
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