Neural network reconstructions of large-scale structures

Punyakoti Ganeshaiah Veena (Punya)

University of Genoa, Italy work done with R.Lilow, A.Nusser, E. Branchini and E. Maragliano

Mapping the skies

Mapping the skies

Distances

Solar system-nearest star

5 pc

Galaxy

15 kpc

$$1 \text{ kpc} = 10^3 \text{ pc}$$

 $1 \text{ Mpc} = 10^3 \text{ kpc}$

Cluster of galaxies

30 Mpc

Universe around us.

Redshift space distortions

Peculiar velocity: velocity of galaxy away from the Hubble flow:

$$v_{pec} = v_{observed} - v_{Hubble}$$

Distribution of galaxies in real space v/s redshift space.

$$\mathbf{s} = \mathbf{r} + \frac{v_z}{H} \hat{\mathbf{z}}$$

Redshift space distortions

- Small-scale non-linear distortions: Fingers of God: Elongated along the line of sight
- * Large-scale linear distortions: Kaiser effect: overdensity squished along the line of sight

Redshift space distortions

Noisy, missing and incomplete data

- Discrete sampling: shot noise
- Biased tracers: model of bias
- Redshift space distortions structures are elongated along the line-of-sight.
- Gaps in the data eg. galaxies in the ZoA are obscured by star, dust and gas, survey selection functions

True mapping the Universe

- Infer the true matter density and flows in 3D
- Compare inferred and observed velocity fields ==> how galaxies populate dm haloes, gravity
- Constraints on the cosmological parameters - for the cosmology that we train on.

$$-\frac{1}{H} \overrightarrow{\nabla}_r . \overrightarrow{v}_{lin} = f \delta \quad f \approx \Omega_m^{0.55}$$

Baryon Acoustic Oscillations

galaxy distribution

underlying density field

Can we remove distortions, fill the gaps, and de-bias using neural nets?

Filling gaps and correcting distortions

Example of restoration work: Elias Garcia Martinez's work 'Ecce Homo'

Modern techniques - neural networks.

Filling gaps and correcting distortions

Borrow these methods from machine learning and reconstruct the large-scale structures of the Universe in 3D and also understand what it is reconstructing?

Example of restoration work: Elias Garcia Martinez's work 'Ecce Homo'

Modern techniques - neural networks.

Machine learning and Neural nets?

Artificial Intelligence: the effort to automate intellectual tasks normally performed by humans.

Eg: early chess programs, robot vacs,

Machine Learning:

automated cars, etc

could a computer learn on its own how to perform a specified task?

Deep Learning: specific subfield of machine learning: learning representations from data that puts an emphasis on learning successive layers of increasingly meaningful representations

Adapted from the book: deep learning with python by François Chollet

Machine learning v/s Deep learning?

Iris versicolor (blue)

DEEP LEARNING (2006)

[Hinton et al.,2006; Bengio et al., 2007; Ranzato et al., 2007a]

When did it start?

Adapted from the book: deep learning by Ian Goodfellow, Yoshura Bengio and Aaron Courville

Why is deep learning popular now?

Scale of digitised data

Adapted from the book: deep learning by Ian Goodfellow, Yoshura Bengio and Aaron Courville

Why is it popular no

- Scale of computation hardware GPUs, num
 - Algorithmic innovations eg ReLU to sigmoi

- 1. Perceptron (Rosenblatt, 1958, 1962)
- 2. Adaptive linear element (Widrow and Hoff, 1960)
- 3. Neocognitron (Fukushima, 1980)
- 4. Early back-propagation network (Rumelhart et al., 1986b)
- 5. Recurrent neural network for speech recognition (Robinson and Fallside, 1991)
- 6. Multilayer perceptron for speech recognition (Bengio et al., 1991)
- 7. Mean field sigmoid belief network (Saul et al., 1996)
- 8. LeNet-5 (LeCun et al., 1998b)
- 9. Echo state network (Jaeger and Haas, 2004)
- 10. Deep belief network (Hinton et al., 2006)
- 11. GPU-accelerated convolutional network (Chellapilla et al., 2006)
- 12. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)
- 13. GPU-accelerated deep belief network (Raina et al., 2009)
- 14. Unsupervised convolutional network (Jarrett et al., 2009)
- GPU-accelerated multilayer perceptron (Circsan et al., 2010)
- 16. OMP-1 network (Coates and Ng, 2011)
- 17. Distributed autoencoder (Le et al., 2012)
- 18. Multi-GPU convolutional network (Krizhevsky et al., 2012)
- 19. COTS HPC unsupervised convolutional network (Coates et al., 2013)
- 20. GoogLeNet (Szegedy et al., 2014a)

Adapted from the book: deep learning by Ian Goodfellow, Yoshura Bengio and Aaron Courville

What about in cosmology?

Scale of observational data

What about in cosmology?

Scale of simulated data - needs catching up!

Quijote simulations

The Quijote simulations is a suite of more than 82,000 full N-body simulations designed to:

- Quantify the information content on cosmological observables
- Provide enough statistics to train machine learning algorithms

ML papers in astro-ph

 Clever Hans effect: model might appear to perform well, but could be picking up on spurious correlations or artefacts in the data — not learning what we think it's learning

Classified as a Horse

Classified as a Horse

Not a Horse

Not a Horse

Lapuschkin. S, et al 2019

- Large representative dataset to train method is only as good as the data is. (eg: Clever Hans phenomenon)
- Start simple with a small network and an understanding of what we are optimising for loss function.
- Compare it with already existing techniques, to see if the performance is better or worse.

Back to reconstruction!

GOALS:

- Given a galaxy distribution in redshift space, reconstruct the true underlying matter density and velocity fields using neural networks.
- In the process, demystify machine learning can we interpret what the machine does using known statistical techniques?
- Can we recover Wiener filter from neural network methods?
- Use a hybrid technique physics+neural network
- Apply this technique to 2MRS data.

Main aim: map the density or velocity fields

Observed galaxy density field

True underlying matter density

Input field: I

Target field: T

Other methods used so far for reconstructing LSS? (Eulerian reconstructions)

- Wiener filter linear reconstruction e.g Zaurobi et al 1994, Lilow et al 2021
- Other reconstruction methods e. g. Bertschinger & Dekel 1989; Yahil et al. 1991; Nusser & Davis 1994; Fisher et al. 1995; Bistolas & Hoffman 1998; Zaroubi et al. 1999; Kitaura et al. 2010; Jasche et al. 2010; Courtois et al. 2011; Kitaura 2013; Jasche & Wandelt 2013; Wang et al. 2013; Carrick et al. 2015; Lavaux 2016; Bos et al 2016,2018; Jasche & Lavaux 2019; Graziani et al. 2019; Kitaura et al. 2020; Zhu et al. 2020

Main aim: map the density or velocity fields

Observed galaxy density field

True underlying matter density

Input field: I

Target field: T

A simple network

Nonlinear network + MSE loss = Mean posterior estimate

$$L^{\text{MSE}}(\hat{\mathbf{T}}) = \frac{1}{MN} \sum_{\alpha=1}^{M} \sum_{j=1}^{N} \left(T_j^{\alpha} - \hat{T}_j(\mathbf{I}^{\alpha}) \right)^2$$

Minimising MSE gives the mean posterior estimate!

Mean of true fields given the observed field.

Input field: Ii

Target field: Ti

$$\hat{\mathbf{T}}_{i}^{\text{MSE}}(\mathbf{I}) = \sum_{T} P(\mathbf{T} | \mathbf{I}) T_{i} = \langle T_{i} | \mathbf{I} \rangle,$$

A simple linear network+MSE = Wiener filter Complex network with linear activation+MSE=WF

Wiener filtering for galaxy distributions

[Zaroubi et al 1994]

- Observed density field —-> True density field
- Reconstructed field is a linear combination of the observed field $\hat{T}_i^{WF(I)} = \sum_i w_{ij}^{WF} I_j + b_i^{WF}$
- Minimum variance estimator: minimise MSE.

$$T^{WF} = \langle TI \rangle \langle II \rangle^{-1} I$$

Wiener filtering for galaxy distributions

[Zaroubi et al 1994]

- A neural network with an input and output layer and linear activation is equivalent to a WF.
- 2. When the field to be reconstructed is **Gaussian**, WF (min. var) and non-linear NN (mean posterior) estimates should both be the same!

$$T^{WF} = \langle TI \rangle \langle II \rangle^{-1} I$$

Gaussian fields

Gaussian fields

Wiener filter and Neural Network give the same result for Gaussian fields.

For 3D data, use convolutions: Autoencoder

Density field reconstructions in 3D

$$\delta(x) = \frac{\rho(x) - \bar{\rho}}{\bar{\rho}}$$

Density field reconstructions

Density field reconstructions - with RSD

Velocity field reconstructions.

Velocity field reconstructions

Reconstruction for different galaxy number densities

Reconstruction in gaps

P.Ganeshaiah Veena, R.Lilow & A. Nusser 2023

Informed learning: first Linear Theory and then Neural network

NN+Linear Theory for removing RSD

E.Maragliano, P. Ganeshaiah Veena, G. Degni & E. Branchini in prep: expected to arrive soon!

Linear Theory

$$\Psi = x - q$$

$$\nabla \cdot \Psi + \beta \nabla \cdot (\Psi \cdot \hat{r})\hat{r} = -\frac{\delta_s}{b}$$

$$\delta_{\rm s}(k) = \exp\left[-\frac{1}{2}\left(\frac{k}{R_{\rm s}}\right)^2\right] \delta_{\rm obs}(k)$$

NN+Linear Theory for removing RSD

Density distribution

E.Maragliano, P. Ganeshaiah Veena, G. Degni & E. Branchini in prep: expected to arrive soon!

NN+Linear Theory for removing RSD

E.Maragliano, P. Ganeshaiah Veena, G. Degni & E. Branchini in prep: expected to arrive soon!

Apply this to real data: 2MRS

Create a 3D map of the local Universe using real galaxies.

2MRS data

- Flux limited survey, Ks-band magnitude of Ks ≤ 11.75
- Sky positions and spectroscopic redshifts for 44, 572 galaxies
- Survey footprint covers 91% of the sky, only missing the Zone of Avoidance (ZoA)
- For our work: spherical volume with a radius of 200 Mpc/h, encompassing 98% of all the galaxies

Mocks from Quijote simulations

Mocks include:

- survey selection function
- bias
- redshift space distortions
- * zone of avoidance.
- * 6400 mocks: 5760 for training and 640 for test+validation.
- Loss is MSE scaled with the selection function:

Loss
$$(\hat{\delta}^{\text{NN}}) = \frac{1}{M_{\text{train}} M_{\text{grid}}} \sum_{\alpha=1}^{M_{\text{train}}} \sum_{j=1}^{M_{\text{grid}}} \phi(r_j) \left(\delta_j^{\text{true},\alpha} - \hat{\delta}_j^{\text{NN},\alpha}\right)^2$$

Loss functions

$$\text{Loss}(\hat{\delta}^{\text{NN}}) = \frac{1}{M_{\text{train}} M_{\text{grid}}} \sum_{\alpha=1}^{M_{\text{train}}} \sum_{j=1}^{M_{\text{grid}}} \phi(r_j) \left(\delta_j^{\text{true},\alpha} - \hat{\delta}_j^{\text{NN},\alpha}\right)^2$$

$$\operatorname{Loss}\left(\mathring{\Psi}^{\mathrm{NN}}\right) = \frac{1}{M_{\mathrm{train}}M_{\mathrm{grid}}} \sum_{\alpha=1}^{M_{\mathrm{train}}} \sum_{j=1}^{M_{\mathrm{grid}}} \frac{\phi(r_{j})}{r_{j}} \left(v_{j}^{\mathrm{true},\alpha} - \nabla \mathring{\Psi}_{j}^{\mathrm{NN},\alpha}\right)^{2}$$

Observed fields-Quijote mocks

Reconstructed fields - Quijote mocks

MSE - Quijote mocks

2MRS reconstruction

Density velocity relation-Quijote mocks

R.Lilow, P.Ganeshaiah Veena, & A. Nusser 2024

Probing "super survey" scales

R.Lilow, P.Ganeshaiah Veena, & A. Nusser 2024

Probing "super survey" scales

$$s = r + U \Longrightarrow \delta^{redshift} = \delta^{real} - \frac{dU}{dr}$$

$$U(\mathbf{y}) = \int_{INSIDE \ survey} \delta^{real}(\mathbf{x})K(\mathbf{x}, \mathbf{y})d^3x + \int_{OUTSIDE \ survey} \delta^{real}(\mathbf{x})K(\mathbf{x}, \mathbf{y})d^3x$$

Corollary: distribution of matter inside survey encodes info on external matter (not just via statistics correlations)

R.Lilow, P.Ganeshaiah Veena, & A. Nusser 2024

2MRS reconstructions - cosmography

Clusters/ Superclusters

Shapley

Coma

Hydra-Centaurus

Virgo

Norma

Perseus-Pisces

R.Lilow, P.Ganeshaiah Veena, & A. Nusser 2024

Bulk velocity from NN

Thank you!

