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If the ancient gods of computing are with us, then this practical class will
present:

DRlib is a C++ library for statistical modelling, simulation and inference us-
ing Gibbs marked point processes with interactions. One of the key concepts
underlying the development of this library is the consideration of the point pro-
cess model as comprising components. These components take into account the
possible available covariates and point interactions.

• In a first example related to the homogeneous Poisson point process, we
will present the overall structure of the library and its constituent parts.
This allows us to consider purely random homogeneous point patterns.

• A modification of one component enables us to build inhomogeneous Pois-
son processes in order to consider purely random inhomogeneous point
patterns.

• The flexibility of the library will be demonstrated by making the transition
to the Strauss process in order to introduce repulsion between points.

• Finally, a three-component model is built. These components enable us to
consider random point patterns (Poisson process) that exhibit attraction
over short distances (area-interaction process) and repulsion over longer
distances (Strauss process).

Regarding the application to real data, the data will first be presented and clas-
sical summary statistics will be used to obtain information related to the model
to be implemented.

Don’t worry — things may turn out well!
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1 Generalities

DRlib is a C++ library for modelling, simulating and performing statistical in-
ference using marked Gibbs point processes. Its purpose is to complement exist-
ing tools, such as the spatstat library in R Baddeley, Rubak, and Turner 2016,
with reliable and efficient C++ code that enables intensive Bayesian Markov
chain Monte Carlo (MCMC) inference. This work builds on the MPPLIB li-
brary, which was mainly developed by Lieshout and Stoica 2006. The current
version of the library is freely available at:

https://gitlab.univ-lorraine.fr/labos/iecl/drlib

DRlib analyses point patterns using the following tools:

• Modelling: implements the probability density that models the character-
istics of an observed pattern. These characteristics are associated to the
model components which are controlled by the model parameters.

• Simulation: implements a Metropolis-Hastings algorithm, a Markov chain
Monte Carlo (MCMC) algorithm that samples the proposed probability
density model. In other words, it produces point patterns exhibiting the
desired considered characteristics.

• Statistical inference: samples the posterior distribution, i.e. the distribu-
tion of the parameters conditioned on the observed pattern. This step
uses the ABC Shadow algorithm. Sampling from the posterior distribu-
tion enables parameter-based inference (e.g. parameter estimation and
statistical testing).

The probability density of a marked Gibbs point process controlling the position
of points in the pattern x writes as :

f(x|θ) = exp [−U(x|θ)]
c(θ)

with U(x|θ) the energy function and c(θ) the partition function. Here we con-
sider energy functions of the form

U(x|θ) = −⟨t(x), θ⟩ = −
m∑
i=1

ti(x)θi

where ti(x) represents the characteristic of the pattern and θi its associated
parameter or weight. The number of the characteristics m is pre-fixed. These
characteristics are the sufficient statistics of the model, that is the all the needed
knowledge in order to determine the parameters θ. From a programming per-
spective each statistic will be considered a particular component of the model.
The sum of ti(x)θi will be calculated with specialized C++ objects of type Com-
ponent.
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2 Get the practical class files and project orga-
nization

2.1 Get the practical class files

Create your own working directory. In a terminal window, first make sure that
no directory is named Excosm-Tartu-Course in the working directory. Then
create a clone of the files’ course:

git clone https://gitlab.univ-lorraine.fr/labos/iecl/Excosm-Tartu-Course.git

This command creates a directory Excosm-Tartu-Course that contains sev-
eral subdirectories.

The Unix rights on .bat programs with git could be wrong. To solve that :
cd Excosm-Tartu-Course
find . -name \*.bat -exec chmod +x {} \;

2.2 Typical organisation of the files for a project built
with DRlib

The files related to a typical DRlib project are grouped into a directory and
this directory contains 2 subdirectories C++ and R that have the following
structure:
C++ contains all needed files for C++ computation

-> DATA Initial data or important intermediary results
-> EXEC executables (.exe issued from g++ and shell .bat)
-> PARAMS parameters files
-> RESULTS results files (pattern, statistics)
-> SRC sources files and Makefile

R contains some visualization Rstudio programs

A typical development phase is:

DATA ↘
SRC

make−−−→ EXEC
execution−−−−−−→ RESULTS

PARAMS ↗ ↘
R

Rscript−−−−−→ plot simulation results
plotPattern-Stat rstudio.R

display inference results
displaySampling rstudio.R
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3 Modelling, simulation and inference tools. Work
on synthetic data.

3.1 Homogeneous Poisson process

The first model presented is the homogeneous Poisson process. The probability
density of the process is expressed as:

p(x) ∝ βn(x) ∝ exp(n(x) log β)

with n(x) the number of points in the configuration x and β > 0 the constant
intensity parameter.

All the necessary files can be found in the directory 01-Poisson-Homogen
which is organised as follows:

C++ -> EXEC executables (.exe issued from g++ and shell .bat)
-> abc simul.bat
-> model simul.bat
-> sim abc.exe
-> sim model.exe

-> PARAMS parameters files
-> p abc *.txt
-> p sim model *.txt

-> RESULTS results files (pattern, statistics)
-> SRC sources files and Makefile

the file *.bat contain a line with the corresponding executable with the param-
eter file.

3.1.1 Compilation

The compilation is performed using make in the SRC directory. The *.exe
executables are then generated in the EXEC directory. To compile the files :

make

To erase the files produced by compilation (*.obj and *.exe) do the following :

make clean

This allows to re-start the compilation from the very beginning.

3.1.2 Execution

The executable programs are located in the EXEC directory. Example exe-
cution commands are provided in the files model simul.bat, abc simul.bat de-
pending on the case.
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The program model simul.bat uses the MCMC sampling method to generate
point configurations following a given point process model. For each of the gen-
erated point configurations sufficient statistics are computed and saved in a file.

The program abc simul.bat approximateley samples the posterior distribution
of the model parameters using the ABC Shadow method. At each step, the
program saves the current parameters value.

These programs use as entries the parameter files available in the PARAMS
directory.

Important remark : the Unix rights on .bat programs with git could be wrong.
To solve this: chmod +x *.bat

3.1.3 Simulation

In the following, some key elements of the code are presented in order to under-
stand the use of the library.

First selected code lines are from sim model.cpp

117 std::vector<GenericComponent*> list_component_model;

118

119 // ===================================================

120 // POISSON

121 // For inhomonegenousity see

122 // - PoissonComponent :: beta_parameter_model_func( Event* e )

123 // - PoissonComponent :: beta_exp_parameter_model_func( Event* e )

124 PoissonComponent poissonComponent(logBetaP,K_x,K_y,0);}

125 list_component_model.push_back(&poissonComponent);

126

127 // Model

128 // Don't forget Event* Model :: newEvent() const redefinition

129 // Don't forget Event* Model :: changeEvent() const redefinition

130 Model the_model(&list_component_model,K_x,K_y);

131

132 // Sampler

133 MH algo_sampler(&the_model,time_mh,pbirth,pdeath);

134

135 // Pattern

136 Pattern xpattern;

137 MarkedEvent::numberOfMark = 0;

138

139 int nbi;

140 for(nbi=0;nbi<nbiter;nbi++)

141 {

142 cout << "Iteration : "<< nbi << "\n";

143 // in the method sim execution x times of the sampler transition

144 algo_sampler.sim(xpattern);
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145 // at each iteration a pattern is taken

146 xpattern.printInFile(name_sample_pattern);

147 the_model.computeStatistics(xpattern);

148 the_model.printStatistics(xpattern,name_statistics);

149 }

Lines 124 and 125 define the Poisson Component and add it to the list of
Component. This list with the size of domain defines the Model line 130.
The MH sampler and the Pattern together with the number of marks at-
tached to a point are also defined. The loop lines 140-149 call iteratively the
MH.sim to generate realisations from the model.

Work to be done :
Recall that the homogeneous Poisson process density’s is p(x) ∝ βn(x) ∝
exp(n(x) log β). This model generates random configurations of points exhibit-
ing no interactions. Its sufficient statistic is the pattern’s number of points and
the corresponding parameter is β. This parameter thus controls the pattern’s
amount of points, more precisely, it controls the average number of points of
the patterns.

1. Compilation and execution of the program.
Go to the directory 01-Poisson-Homogen/C++/SRC
Compilation of the program:

make clean
make

Go to the directory 01-Poisson-Homogen/C++/EXEC
2 executable programs are generating sim model.exe and sim abc.exe (will
explain later)
run the following program :

./model simul.bat
this program run sim model.exe with an example parameter file.

If you take a look at the parameter file in
01-Poisson-Homogen/C++/PARAMS/p sim model poisson inhomogen.txt, the
process will be simulated in the window [0, 1] × [0, 1] (domain’s dimension are
given by K x and K y). The number of MH steps is set to 1000, then we
iterate this 1000 steps 3000 times in order to generate 3000 realisations of the
homogeneous Poisson point process with parameter value log(β) = 4.6. So the
expected number of points is approximately 100. Two files are created in 01-
Poisson-Homogen/C++/RESULTS : Y model poisson homogen.txt and
stat model poisson homogen.txt, the last simulated pattern 2D coordinates and
the statistics after each realisation respectively.

2. Display the results Open in Rstudio the following file :
01-Poisson-Homogen/R/plotPattern-Stat rstudio.R

This .R file reads the .txt files Y model poisson homogen.txt and
stat model poisson homogen.txt to plot the last simulated pattern together
with the cumulative mean of the statistics, here the number of points. We
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can see that the last simulated pattern countains 98 points (first line of
the file), which is not exactly the parameter value. However, the mean of
the number of points is very close to the parameter value.

In order to simulate other realisations with different parameter values, we can
now change the parameter values inside the parameter file.
01-Poisson-Homogen/C++/PARAMS/p sim model poisson homogen.txt.

3. Run different models and interpret the obtained results. Use
the editor of your choice, you can modifiy, in the directory 01-Poisson-
Homogen/C++/PARAMS the file p sim model poisson homogen.txt.
For instance, you can modify the log β parameter from 4.6 to 5.0 and re-
run the previous program using ./model simul.bat

It can be seen that the average number of points in a realisation has increased
from e4.6 = 99.5 to e5.0 = 148.4.

Important: it is more convenient from a numerical perspective to slightly trans-
form the formulas of the probability densities describing the considered models
in order to be able to work with log β instead of β.

3.1.4 Inference: posterior sampling

The previous compilation also generated an executable named sim abc.exe. Its
purpose is to sample from the posterior distribution. The key assumption is
that the observed pattern is generated by the realization of a parametric model.
Within this context, posterior sampling means to obtain a set of parameter val-
ues i.e. models, that able to produce patterns exhibiting statistics close to the
observed ones. The values of the most probable parameters represent the models
that have the most chances to reproduce patterns with the observed characteris-
tics. For the homogeneous Poisson point process, the sufficient statistic allowing
parameter estimation is the number of points in a configuration. The program
sim abc.exe takes a parameter file. As previously, the batch file abc simul.bat
runs the executable using a pre-defined parameter file.

Work to be done:
The parameter file contains all the information required to run the posterior
sampling algorithm. Firstly, it contains the seeds of the random number gen-
erator, enabling fine-tuning during program development and reproducibility of
results. This is followed by the size of the point process simulation domain,
the value(s) of the sufficient statistics calculated for the observed data and the
needed information related to the search domain for the model parameters val-
ues (search interval, search step and initial position). At each step of the algo-
rithm, the program collects the values of the parameters and saves them in a file
(here ../RESULTS/theta abc poisson homogen.txt). The last simulated auxil-
iary pattern is also saved in a file (here../RESULTS/Y abc poisson homogen.txt).
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As explained previously, for reasons of numerical stability of the perfomed com-
putations, the logarithm of the different paremeters values are used in the cor-
responding parameter files, respectively.

Here, the purpose is to run the inference based on the observations. The ob-
served statistic is the mean number of points 99.58 (this value may be different
weither you use Linux or Mac-OS due to the difference in seeding), the number
of iteration for the ABC Shadow procedure is set to 50 000 and the parameter
is changed 50 times at each iteration, with pertubation parameter δ = 0.01.
The initial log β value is 4.5, the minimum and maximum value are 1 and 9
respectively. The number of steps to generate an auxiliary pattern is 250. Here,
we expect to find back the parameter we used to sample the different realisation
because the observed statistics are based on numerous observation, making the
inference more precise. Then, the results (the last auxiliary pattern and the
sample of log β) will be displayed thanks to the .R file.

1. Run the ABC Shadow Algorithm. Go to the directory 01-Poisson-
Homogen/C++/EXEC
run the following program :

./abc simul.bat

2. Print and interpret the results. Open in Rstudio the following file :
01-Poisson-Homogen/R/plotPattern-Stat rstudio.R
run it (possible if necessary to go to solutions)

The histogram of the obtained values of β represents an approximation of the
desired posterior density. It can be seen that the histogram is unimodal, as ex-
pected. Its mode is close to the theoretical value 4.6. The value of the estimated
maximum likelihood is therefore close to the true parameter values which here
is 4.6.

In conclusion, Homogeneous Poisson is good but Inhomogeneous Poisson is bet-
ter...

3.2 Inhomogeneous Poisson process

In a homogeneous Poisson process, the points are spread uniformly and indepen-
dently across the space domain. There are many situations in which, mathemat-
ically speaking, we may not want to abandon the hypothesis of independence.
However, information and evidence relating to the non-uniform distribution of
points in space is available. For instance, galaxies tend to be found close to the
spines of galactic filaments. In this case, the intensity parameter is no longer
constant over the space domain. The process becomes inhomogeneous.

10



In this context, the probability density of an inhomogeneous Poisson point pro-
cess writes as

p(x) ∝
n(x)∏
i=1

β(xi)

with the intensity function β(xi) ≥ 0 not necessary constant.

3.2.1 Inhomogeneity

From a programming perspective, one needs to transform the constant intensity
of an homogeneous Poisson process into a location dependent intensity function,
in order to obtain an inhomogeneous Poisson process.

Have a look at the following DRlib piece of code (lines 96-110) extracted from
the file :

01-Poisson-Homogen/C++/SRC/poissoncomponent.cpp

96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

97 double PoissonComponent :: beta_parameter_model_func( Event* e )

98 {

99 return parameter_model;

100

101 }

102

103 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

104 double PoissonComponent :: beta_exp_parameter_model_func( Event* e )

105 {

106 return exp(beta_parameter_model_func(e));

107

108 }

109

110 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

In order to change it and to obtain what we want, it’s time to go in directory
02-Poisson-Inhomogen

cd {GoodPlace}/02-Poisson-Inhomogen

A new subdirectory DATA is present in the directory C++. In this new direc-
tory, the file lambda1 matrix from dist map xy.dat contains the representation
of discretised intensity function under the form of a matrix (see Fig. 1b). The
matrix is computed using the shortest distance from the points of a given grid
to an already existing filamentary pattern. Before getting the final results, a
smooting kernel and a normalisation to 1 are applied (see Fig. 1a). The sum of
all the grid values approximates the integral of the intensity function over the
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considered domain W , hence we have∫
W

β(x)dx ≈
m∑
j=1

β̂(wi)

with β̂ the smoothed intensity funcion, wi the grid points and m the size of the
grid.

The practical implication is that using this intensity function, a proper multi-
plicative constant should be added in front of the intensity function in order to
control the average number of points in a configuration. Furthermore, discreti-
sation effects should be taken into account as well. Within this context, the
probability density of the considered inhomogeneous Poisson process has the
following form:

p(x) ∝
n(x)∏
i=1

β̃β(xi)

with β(xi) a known intensity function that integrates on W to 1 and β̃ the
unknown parameter controlling the number of points in the configuration, that
should be estimated.

3.2.2 A modified PoissonComponent : PoissonInhomogenCompo-
nent

To take the inhomogeneity into account, in addition to the fairly simple modi-
fications of the files sim model.cpp and sim abc.cpp, the PoissonComponent
must be adapted into PoissonInhomogenComponent.

96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

97 double PoissonInhomogenComponent :: beta_parameter_model_func( Event* e )

98 {

99 return parameter_model;

100

101 }

102

103 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

104 double PoissonInhomogenComponent :: beta_exp_parameter_model_func( Event* e )

105 {

106 double x_event,y_event;

107 x_event=e->getX();

108 y_event=e->getY();

109 double area_elt;

110 area_elt=(width_window/nb_column_lambda1)*(height_window/nb_line_lambda1);

111 int x_grid_matrix,y_grid_matrix;

112 x_grid_matrix=static_cast<int>(x_event/(width_window/nb_column_lambda1));

113 y_grid_matrix=static_cast<int>(y_event/(height_window/nb_line_lambda1));
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(a) Distance Map from filaments on domain [0,30]x[0,30]

(b) From Distance Map, intensity matrix 512x512 on
domain [0,30]x[0,30]. The sum of 512x512=262144 values is 1.

114

115 return ( lambda1matrix[y_grid_matrix][x_grid_matrix]

116 /area_elt*exp(beta_parameter_model_func(e)) );

117

118 }

119

120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

In this case, the intensity depends on the location of the point in the domain,
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as described in the figures above.

Work do be done :
Reminder : the model parameter in the parameter file is not β but log β.

In addition to the parameters presented in the homogeneous case, the parameter
file p sim model poisson inhomogen.txt includes a line that is the name of the
file containing the inhomogeneity unit matrix (in our case :
../DATA/lambda1 matrix from dist map xy.dat)
This matrix describes the inhomogeneity we want to take into account for the
simulations.

1. Go to the directory 02-Poisson-Inhomogen/C++/SRC
compile and run the samples programs ./model simul.bat and ./abc simul.bat

If you take a look at the parameter file in
02-Poisson-Inhomogen/C++/PARAMS/p sim model poisson homogen.txt, the
process will be simulated in the window [0, 1] × [0, 1] (domain’s dimension are
given by K x and K y). The number of MH steps is set to 1000, then we iterates
this 1000 steps 10000 times to generate 10000 realisations of the inhomogeneous
Poisson point process with parameter value log(β) = 4.60. This time, the points
should be spread differently than the homogeneous case.

For the inference, we used the same parameters as previously, except that we
took a different number of points as inputs and ran only 20000 iterations of the
ABC Shadow algorithm. The program creates 2 .txt file named theta abc poisson inhomogen.txt
and Y abc poisson inhomogen.txt (containing the last simulation).

Now, it’s time to display the results.

2. As previsouly, using Rstudio , you can check that :
- the points organize along certain regions
- the inference indeed provides a good approximation of the correct number
of points. (possible if necessary to go to solutions)

3.3 Inhomogeneous Marked Strauss process

Inhomogeneity may be seen as an effect due to the nature of the space to which
the points belong. However, it is also possible that points interact with each
other. For example, two points may exhibit repulsion if they are too close to
each other. This is the case in the repulsive Strauss process.

Let us further assume that the points are marked. A marked point pattern is a
sequence x = {x1, . . . , xn} with xi = (wi,mi) a point with position wi ∈ W and
mark mi ∈ M , where W and M are the location and mark spaces, respectively.
If the marks are positive real values, the marked point xi can be seen as a disk
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centred in wi with radius mi.

There are several ways to introduce interactions between points using the Strauss
process philosophy, while taking into account the positions of points and their
marks. For more detailed considerations and related bibiliography on the sub-
ject the reader may refer to Baddeley, Rubak, and Turner 2016; Møller and
Waagepetersen 2004; Lieshout 2000; Stoica 2025.

Let us consider the Strauss process given by the following probability density:

p(x) ∝

n(x)∏
i=1

β(xi)

 γs(x)

with the statistic s(x) given by

s(x) =

n(x)∑
i,j=1,i<j

1{d(wi, wj) ≤ mi +mj}.

This statistic counts the pairs of points that are too close, or more easy to see
it, the pairs of disks that tend to overlap. The model is well defined for β > 0
and γ in ]0, 1].

The DRlib uses the previous construction of the intensity of the Poisson process
and adds interactions in order to construct and manipulate the Strauss model.

It’s time to go in directory 03-Poisson-Inhomogen-MarkedStrauss

cd {GoodPlace}/03-Poisson-Inhomogen-MarkedStrauss

In the subdirectory C++/SRC we find the same file names sim model.cpp and
sim abc.cpp

Let’s take a closer look at an excerpt from sim model.cpp

137 std::vector<GenericComponent*> list_component_model;

138 // ===================================================

139 // POISSON

140 // For inhomonegenousity see

141 // - PoissonComponent :: beta_parameter_model_func( Event* e )

142 // - PoissonComponent :: beta_exp_parameter_model_func( Event* e )

143 PoissonInhomogenComponent poissonInhomogenComponent(logBetaP,K_x,K_y,0);

144 poissonInhomogenComponent.loadFromFileLambda1matrix(name_lambda1_matrix);

145 list_component_model.push_back(&poissonInhomogenComponent);

146 // Model
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147 // Don't forget Event* Model :: newEvent() const redefinition

148 // Don't forget Event* Model :: changeEvent() const redefinition

149 // ===================================================

150 // STRAUSS

151 MarkedStraussComponent straussrandomComponent(logGammaS,K_x,K_y,

152 radius_random_min_Strauss,radius_random_max_Strauss,

153 alea_type_Strauss,alea_parameter_Strauss,1,0);

154 list_component_model.push_back(&straussrandomComponent);

155 // ===================================================

156 Model the_model(&list_component_model,K_x,K_y);

157

158 // Sampler

159 MH algo_sampler(&the_model,time_mh,pbirth,pdeath);

160

161 // Pattern

162 Pattern xpattern;

163 MarkedEvent::numberOfMark = 1;

164

165 int nbi;

166 for(nbi=0;nbi<nbiter;nbi++)

167 {

168 cout << "Iteration : "<< nbi << "\n";

169 // in the method sim execution x times of the sampler transition

170 algo_sampler.sim(xpattern);

171 // at each iteration a pattern is taken

172 xpattern.printInFile(name_sample_pattern);

173 the_model.computeStatistics(xpattern);

174 the_model.printStatistics(xpattern,name_statistics);

175 }

Some explanations:

• the model is composed of 2 Component that are added to the list of
list component model (lines 145 and 154).

• the mark number of each point is 1. This mark represents the radius of
the disk of influence of each point in the Strauss process. The number of
marks of each point is defined line 163 (in red)

MarkedEvent::numberOfMark = 1;

• in the definitions of the Component poissonInhomogenComponent
(line 143) there is a parameter 0 in red that corresponds to the rank
(its position) of the component in the list of list component model.
straussrandomComponent is in second position so of rank 1. The
index (or position) of the mark concerning the straussrandomCompo-
nent is in first position (since there is only one brand) and is therefore
equal to 0 (line 153).

This mechanism is needed for models exhibiting two or more components.
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This time, in addition to the inhomogeneity, we’re working with a new model,
the Strauss model. We’re looking to control the amount of connected r−pairs,
where r is a fixed radius. The expected behaviour is the following : β will
control the amount of points (the greater it is, the larger will be the amount of
points) and γ will control the strength of repulsion. If γ = 1, the model boils
down to an inhomogeneous Poisson point process and the closer γ is to 0, the
stronger the repulsion will be.

1. Compile and run the programs ./model simul.bat and ./abc simul.bat

2. Note the repulsive behaviour on the last realisation and how the number
of points has evolved. (possible if necessary to go to solutions)

3. Modify the γ parameter and re-run the programs. Observe the repulsion
phenomenon through the obtained point configurations and the behaviour
of the statistics.

3.4 Inhomogeneous Marked Area-Interaction process

The interactions in the Strauss model are distance based. Mathematical require-
ments impose that this model can be used only for modelling repulsive point
patterns. It is perfectly possible to introduce different type of interactions. For
instance the area-interaction point processes controls the area occupied by the
underlined point pattern. Furthermore, the model is able to simulate both type
of patterns, clustered or regular (repulsive). Its probability density is as follows

p(x) ∝

n(x)∏
i=1

β(xi)

 γ−ar(x)

with n(x) the number of points in the configuration. The statistic ar(x) is given
by:

ar(x) =
ν
[⋃n(x)

i b(wi,mi)
]

πr2

where b(xi,mi) represents the balls of center xi and radius mi, ν denotes the
area of a set and r is a pre-defined range parameter covering to the average value
of the radius of a disk in the marked points’ configuration. The numerator in
the statistic ar(x) represent the area of the disks configuration. The denomi-
nator is a normalisation factor that allows to interpret ar(x) as the number of
disks of average radius r that occupy the area given by a random configuration
of disks. The model is well-defined for γ > 0. If γ > 1 the process tends to
produce clustered patterns, otherwise the patterns produced tend to exhibit a
repulsive character.

It’s time to teleport to the directory 04-Poisson-Inhomogen-MarkedAreaInt
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cd {GoodPlace}/04-Poisson-Inhomogen-MarkedAreaInt

Work To Be Done: Now we’re going to simulate and run the inference for this
new model.

1. Compile and run the samples programs ./model simul.bat and ./abc simul.bat

2. In our case log(γA) = −0.3. The process tends to spread points.

Observe the repulsive phenomenon through the obtained point configura-
tions and the behaviour of the sufficient statistics, that is the number of
points and the normalised area of the pattern. If necessary go directly to
solutions)

3. Modify the model parameters. Replace the value log(γA) = −0.3 by
log(γA) = 1.

For doing this, in file p sim model poisson inhomogen markedareaint.txt,
modify the line after //AreaInt log GammaA by replacing −0.3 by 1 (line
24) and re-run the programs. The process is attractive, and the AreaInt
component tends to gather the points together.

3.5 Inhomogeneous Marked Strauss Area-Interaction pro-
cess

Galaxies in our Universe tend to form clusters that align along filaments like
pearls on necklace Stoica 2025; Tempel, Kipper, et al. 2014. In this case, we may
consider that the galaxy distribution exhibits short range attraction in order to
form clusters, a long range repulsion in order to separate the cluster and also
an inhomogeneous aspect induced by the filamentary pattern. It is perfectly
possible to use DRlib in order to build marked point processes showing these
types of characteristics. Please consider the following point process model:

p(x) ∝

n(x)∏
i=1

β(xi)

 γ
s(x)
S γ

−ar(x)
A

with

β(·) the inhomogeneity function
n(x) the number of points in x

γS interaction parameter of the Strauss component
s(x) number of the interacting pairs of the Strauss component

γA interaction parameter of the Area -Interaction component
−ar(x) normalised surface of the pattern x

of the Area-Interaction component
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From a programming perspective, the range parameters in the Strauss and Area-
Interaction components may be considered as marks.
It’s time to pass through the stargate to the directory 05-Poisson-Homogen-
MarkedStrauss-MarkedAreaInt

cd {GoodPlace}/05-Poisson-Homogen-MarkedStrauss-MarkedAreaInt

In the subdirectory C++/SRC we find the same file names sim model.cpp and
sim abc.cpp

Let’s have a closer look at an except from sim model.cpp

160 std::vector<GenericComponent*> list_component_model;

161

162 // ===================================================

163 // POISSON

164 // For inhomonegenousity see

165 // - PoissonComponent :: beta_parameter_model_func( Event* e )

166 // - PoissonComponent :: beta_exp_parameter_model_func( Event* e )

167 PoissonComponent poissonComponent(logBetaP,K_x,K_y,0);

168 list_component_model.push_back(&poissonComponent);

169

170 // ===================================================

171 // STRAUSS

172 MarkedStraussComponent straussrandomComponent(logGammaS,K_x,K_y, radius_random_min_Strauss,radius_random_max_Strauss,

173 alea_type_Strauss,alea_parameter_Strauss,1,0);

174 list_component_model.push_back(&straussrandomComponent);

175

176 // ===================================================

177 // AREAINT

178 MarkedAreaIntComponent areaintrandomComponent(logGammaA,K_x,K_y,

179 radius_random_min_AreaInt,radius_random_max_AreaInt,

180 alea_type_AreaInt,alea_parameter_AreaInt,

181 resolution,2,1);

182 list_component_model.push_back(&areaintrandomComponent);

183

184 // ===================================================

185 // Model

186 // Don't forget Event* Model :: newEvent() const redefinition

187 // Don't forget Event* Model :: changeEvent() const redefinition

188 Model the_model(&list_component_model,K_x,K_y);

189

190 MH algo_sampler(&the_model,time_mh,pbirth,pdeath);

191

192 Pattern xpattern;
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193 MarkedEvent::numberOfMark = 2;

Some explanations: the model is made up of three Component numbered 0, 1
and 2. Each point is associated with a mark which is a pair (radius for Strauss,
radius for AreaInt). In our case, the radius for Strauss will be referenced as
component 0 of the mark, and the radius for AreaInt will be referenced compo-
nent 1 of the mark.

Work To Be Done:

1. Compile and run the programs ./model simul.bat and ./abc simul.bat

2. Note the phenomenon of aggregation on the last realization and how the
number of points has evolved (possible if necessary to go to solutions)

3. Modify the model parameters and re-run the programs. Observe the re-
pulsion or the attraction phenomenon through the obtained point config-
urations and the behaviour of the statistics.

3.6 Some extra explanations

3.6.1 newEvent: not so trivial problem

Intuitively, extending programs from un-marked point patterns to the marked
ones may appear as a simple task. This is not always the case. For the pre-
sented models, we detail the current choice done for the DRib construction. Our
aim is to be able to propose general mathematical and computing construction
allowing to manage, as desired - separetely or jointly - the position of points,
their marks, the interactions component and their associated parameters.

In the following, we detail the solutions actually adopted in DRlib for the con-
struction of the presented model. We believe that after thorough lecture, the
reader will be able to extend the type of solutions proposed. All comments and
suggestions are the most welcome.
To illustrate the problem, let’s take an extract from the file model.cpp

15 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 Event* Model :: newEvent() const

17 {

18 Point p(xrange()*whran.uniform(),yrange()*whran.uniform());

19 MarkedEvent* a_marked_event = new MarkedEvent(p);

20

21 int i;

22 int numberOfComponent=list_component_model->size();

23

24 for (i=0;i<numberOfComponent;i++)

25 {

26 (list_component_model->at(i))->markNewEvent(a_marked_event);

27 }
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28

29 return a_marked_event;

30

31 }

32

33 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

This implementation associate the same mark to all the components involved
in the model. It is clear that for different models this solution has to be changed.

3.6.2 Component specialization

In some specific cases, an adapted version of an already existing component
can be created. Our team worked on developing a type Strauss model: the
StraussCrown (Gillot et al. 2024). This model uses the same statistics as the
Strauss model but this time the number of connected pairs is calculated by
counting the number of pairs between two radii r1 and r2 (r1 < r2).
The profile of constructor object is in the form :

StraussCrownFixedComponent (double parameter_model_parameter,

double width_parameter, double height_parameter,

double radius_parameter_1, double radius_parameter_2,

int rank_parameter);

Note that since in this case the radius of the Strauss process is fixed, it has been
implemented as a model parameter and does not appear as a point mark. The
adaptation of the computeStatistic method for the StraussCrownFixedCompo-
nent is as follows:

void StraussCrownFixedComponent::computeStatistic( StandardPattern& p )

{

int sz = p.getSize();

double pairs = 0.0;

for( int i=0; i<sz-1; i++ )

{

for( int j= i+1; j<sz; j++ ) {

if(( r1 <= p.getEvent(i)->getDistance(p.getEvent(j))) &&

( p.getEvent(i)->getDistance(p.getEvent(j)) <= r2) )

pairs=pairs+1.0;

}

}

current_statistic=pairs;

}

The modular organization of the library means that components can be reused
in a single or duplicated way (with different parameters), and existing compo-
nents can be adapted.
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4 Real data application

4.1 Data presentation

The data used in this practical work is given by the positions of galaxies in a
region of our Universe Hurtado-Gil et al. 2021; Tempel, Stoica, et al. 2014. The
data contains also the spine of the cosmic filaments detected using the Bisous
model Stoica 2025; Tempel, Stoica, et al. 2014.
The aim of this practical lesson is to fit a point process model with interactions
to the galaxies positions conditioned by the observation of the cosmic filaments
spines.

cd {GoodPlace}/10-DATA-3D

In this directory there are threeR scrispts that can be used in Rstudio to display
the galaxies, the cosmic filaments and their superposition , respectively:

display3D gal rstudio.R
display3D fil rstudio.R
display3D gal fil rstudio.R

If it isn’t working, you can go directly to solutions.

For pedagogical reasons, during this practical work we will use the two-dimensional
projections of the data. The data is available through the directory {GoodPlace}/Results
directory. The gal sample xy.dat and fil sample xy.dat files contain respectively
the 2D coordinates of the projected 3D coordinates of the galaxies and filaments
on the plane 0xy.

To visualize the superimposition of 2D galaxies and filaments coordinates, you
can run the superimpose fil gal.R program in the {GoodPlace}/11-Display-
Gal-Fil-2D directory.

If it isn’t working, you can go directly to solutions.

4.2 Distance map

From the filaments, a distance map estimator is computed (cf Fig. 2). The
estimated quantity represents the shortest distance from any point of the domain
to the filamentary pattern. The details of the computation of this estimator are
not given here.
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Figure 2: Distance map from filaments

To visualize the superimposition of galaxies on distance map and filaments on
distance map, you can run the superimpose gal distmap rstudio.R and superim-
pose fil distmap rstudio.R program in the {GoodPlace}/12-Surperimpose-
Gal-Fil-Distmap directory.

If it isn’t working, you can go directly to solutions.

4.3 Exploratory analysis using summary statistics

4.3.1 Choosing the null model

One of the first objectives of the exploratory analysis of a point pattern using
summary statistics is to grasp insight regarding the possible model to be fitted
to the observed data.

This task is not so trivial as it may appear. The first advantage of it is that it
requires neither model assumptions nor model simulations in order to estimate
the chosen summary statistics. Still, as it can be seen later, the use of the ex-
ploratory analysis may require at least good estimates if not real knowledge of

23



the intensity function of the process. It may also require the simulation from a
null model, if one desires more robust answers to the formulated questions.

It is important, when fitting models to an observed point pattern, to understand
its general characteristics: purely random, clustered or repulsive. The purely
random pattern is considered to be the outcome of a Poisson point process.
The clustering or the repulsion behaviour are seen as deviations from a Poisson
process.

Therefore the inhomogeneous Poisson proces is the very first model to be con-
sidered as the null model.

Knowing that the number of galaxies in the data file is 460. Go to the
{GoodPlace}/13-Poisson-Inhomogen-Astro. After compilation in
C++/SRC whith make, execute in directoryC++/EXEC the model simul.bat
program.

To visualize the result pattern, go to {GoodPlace}/13-Poisson-Inhomogen-
Astro/R and execute the plotPattern-Stat rstudio.R.

If it isn’t working, you can go directly to solutions.

4.3.2 Choosing the summary statistic

The choice of the summary statistics to be used is important. The empty space
function, the nearest neighbour distribution, the K− function estimates are
cumulative quantities. In this case, it is difficult to assess at what level the
deviation from the Poisson process occurs.

For these reasons, the pair-correlation function can be preferred. The estimator
of the pair-correlation function does not exhibit the previously mentioned cum-
mulative effect.

Go to the directory 14-Inhomogeneous-Pair-Correlation-Function

In this directory there is a R script that can be used in Rstudio to compute the
inhomogeneous PCF of Poisson with the previous distmap :

compute 2D PCF inhomogen rstudio.R

If it isn’t working, you can go directly to solutions.

For valures r lower than 2 the pair correlation function is superior to 1 hence
indicating clustering with respect to the considered inhomogeneous Poisson pro-
cess. For values r greater than 2 the inhomogeneous pair correlation function

24



tends to behave similarly as the one of the considered inhomogeneous Poisson
process.
In the light of this analysis, in the following, we propose to fit to the data an
inhomogeneous marked area-interaction process. It is also important to take into
account that the implemented envelope test is local, that is a multiple statistical
test implemented for each considered r value. The authors Myllymäki et al. 2017
developed a global test allowing to assess a p−value for the whole range of r
values.

4.3.3 PCF based envelope test

The estimates of the summary statistics are random variables. Hence, their
values computed from a data set are a realisation of these random variables.
When comparing the realisation of a random variable to the possible outcome
from the model considered under H0, it is more robust to simulate envelopes
of the statistics value under the null hypothesis. This is the role of the en-
velope tests Baddeley, Rubak, and Turner 2016; Lieshout 2000; Møller and
Waagepetersen 2004; Stoica 2025ere.

Go to the directory 15-PCF-Envelope-Poisson

cd {GoodPlace}/15-PCF-Envelope-Poisson

In this directory there is a R scripts that can be used in Rstudio to compute
envelope test:

compute 2D PCF inhomogen rstudio.R

In this envelope test, 50 simulations are used to compute the extremal value of
the pcf for different values of r.

If it isn’t working, you can go directly to solutions.

Clearly, the hypothesis that the data may be the outcome of an inhomogeneous
Poisson point process is rejected for values r smaller than 2. For the chosen
intensity function, for values r smaller than 2, the data exhibit clustering with
respect to the considered inhomogeneous Poisson process.

4.4 Choosing an alternative model to be fitted

The Inhomogeneous Area-Interaction processmodel was presented in section 3.4.

We now develop the step-by-step procedure to compute the envelope in this
case.

• computation of sufficient statistics for the proposed model
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• estimation of the parameters values of the model by ABC Shadow

• simulation of n realisations with the estimated parameters

• using the envelopes of the simulations, control the quality of the inference

To sample the posterior density of this model using the ABCShadow method,
we need to compute the studied galaxies pattern’s sufficient statistics.

Following the results of the exploratory analysis, the range parameter was fixed
to r = 0.5.

The programs needed to do this and the inference can be found in 16-Poisson-
Inhomogen-MarkedAreaInt-Astro :

cd {GoodPlace}/16-Poisson-Inhomogen-MarkedAreaInt-Astro/C++/EXEC

In this directory after compilation, there is executable program to compute the
sufficient statistics and estimate the parameters from them.

sufficient statisitics compute.bat

After compilation and execution, we obtain the following sufficient statistics:

n(x) = 459, a(x) = −206.192

Figure 3: 16-Poisson-Inhomogen-MarkedAreaInt-Astro sufficient statistics

These parameters and r = 0.1 are written in the parameter file
p abc poisson inhomogen markedareaint.txt of the ABC shadow located in the
PARAMS directory.

Next, we run the estimation program using the ABCShadow method in EXEC
directory

abc simul.bat
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Calculation times are very long. In R directory, displaySampling rstudio.R dis-
plays the result.

If it isn’t working, you can go directly to solutions.

With the results file theta abc poisson inhomogen markedareaint-5-10e5.txt in
RESULTS directory corresponding to the 5.105 iterations, we estimate the
parameters to the following values:

β = 7.7436, γ = 3.8767

To get a rough idea of the quality of the result, you can use the R program
plotPattern rstudio.R, which visualizes the last pattern generated using ABC.
Figure 4 shows the last pattern generated after 5.105 iterations of ABC.

0 10 20 30

0
5

10
15

20
25

30

  Simulated pattern

Figure 4: Last pattern generated after 5.105 iterations of ABC

We can see that compared with inhomogeneous Poisson process (see above)
there is clustering of points compared to the inhomogeneous Poisson case.
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4.4.1 Model verification

Once a model is fitted to the observed data, there are two more steps to go.
First, the estimated values of the parameters should be verified. One wishes
to see how far these values are from the values of the model parameters that
would really produce the data. Since our estimation is Monte Carlo based, one
wishes to check after how many simulations or iterations of the algorithm the
theoretical precision is reached.

Second, the previous verification is a non-default test. A more insightful in-
formation is to really check and validate the chosen model. Residual theory
can be adapted to rigorously validate point process choices Baddeley, Rubak,
and Turner 2016. A complementary strategy is to perform envelope tests using
the estimated parameters in order to see if the simulated patterns using these
parameters fit the characteristics of the observations outlined by the envelope
test statistic. This test requires the simulation of the null hypothesis model. In
our case, the null hypothesis is the inhomogeneous are-interaction process with
the estimated parameters. The chosen summary statistics for the test was the
pair correlation function.

The necessary material is available in the directory 17-PCF-Envelope-AreaInt

cd {GoodPlace}/17-PCF-Envelope-AreaInt

After compilation, running the program model simul.bat generates in the
{GoodPlace}/17-PCF-Envelope-AreaInt/Simulated directory 50 patterns
generated with the Poisson inhomogen / marked areaint model.

From these simulations, the compute-envelope rstudio.R program in the R di-
rectory calculates and displays the envelope test.

Let’s look at the envelope test result for inhomogeneous Area-Interaction pro-
cess.

If it isn’t working, you can go directly to solutions.

We can see from this envelope that the pcf function of the given galaxy pattern
is included in the envelope. The hypothesis of a marked areaint process is
therefore not invalidated.
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de géologie (ENSG) Nancy. Nancy, France. url: https://hal.science/
hal-04645186.

Hurtado-Gil, L. et al. (2021). “Morpho-statistical characterisation of the spatial
galaxy distribution through Gibbs point processes”. In: Monthly Notices of
the Royal Astronomical Society 507.2, pp. 1710–1722.

Lieshout, M. N. M. van (2000). Markov Point Processes and their Applications.
Imperial College Press, London.

Lieshout, M. N. M. van and R. S. Stoica (2006). “Perfect simulation for marked
point processes”. In: Computational Statistics and Data Analysis 51, pp. 679–
698.

Møller, J. and R. P. Waagepetersen (2004). Statistical inference and simulation
for spatial point processes. Chapman and Hall/CRC, Boca Raton.
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5 Appendix: solutions and results

5.1 Proposed questions simulation of Homogeneous Pois-
son process

β = 4.6 nt.average = 99.58 xd mean = 4.59
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back to questions.
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5.2 Proposed questions Inhomogeneous Poisson process

log(β) = 4.60 nt.average = 99.5 xd mean = 4.60
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5.3 Proposed questions Inhomogeneous Poisson / Marked
Strauss process

log(β) = 4.60 log(γ) = −0.4 r = 0.05

nt = 50.41 sr = 34.3755

xd mean = 4.55 yd mean = −0.41
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back to questions.
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5.4 Proposed questions Inhomogeneous Poisson / Marked
AreaInt process

log(β) = 5.4 log(γ) = 1.0 r = 0.03

nt = 117.76 ar = −88.69

log(βABC) mean = 5.34 log(γABC) mean = 0.93
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log(β) = 5.4 log(γ) = −0.3 r = 0.03

nt = 251.62 ar = −170.78

log(βABC) mean = 5.38 log(γABC) mean = −0.33
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back to questions.
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5.5 Proposed questions Inhomogeneous Poisson / Marked
Strauss / Marked AreaInt process

β = 5.6 γ = −0.20 rs = 0.05 δ = −0.8 ra = 0.03
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5.6 Proposed questions 3D data

(a) Initiales 3D positions of galaxies

(b) Initiales 3D positions of filaments

(c) Surperimposition of galaxies and filaments
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5.7 Proposed questions superimposition 2D galaxies / fil-
aments
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Figure 12: Superimposition of 2D galaxies and filaments coordinates
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5.8 Proposed questions distance map
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5.9 Proposed questions realization of inhomogeneous Pois-
son process
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Figure 14: Realization of inhomogeneous Poisson process
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5.10 Proposed questions inhomogeneous Pair Correlation
Function
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Figure 15: Inhomogeneous Pair Correlation Function
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5.11 Proposed questions PCF envelope inhomogeneous Pois-
son
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ĝh i(r)
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Figure 16: PCF envelope inhomogeneous Poisson
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5.12 Proposed questions Astronomical data sampling-theta
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Figure 17: Astronomical data sampling-theta by ABC shadow
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5.13 Proposed questions PCF envelope AreaInt for given
pattern galaxies
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Figure 18: PCF envelope AreaInt for given pattern galaxies

back to questions.

43


	Generalities
	Get the practical class files and project organization
	Get the practical class files
	Typical organisation of the files for a project built with DRlib

	Modelling, simulation and inference tools. Work on synthetic data.
	Homogeneous Poisson process
	Compilation
	Execution
	Simulation
	Inference: posterior sampling

	Inhomogeneous Poisson process
	Inhomogeneity
	A modified PoissonComponent : PoissonInhomogenComponent

	Inhomogeneous Marked Strauss process
	Inhomogeneous Marked Area-Interaction process
	Inhomogeneous Marked Strauss Area-Interaction process
	Some extra explanations
	newEvent: not so trivial problem
	Component specialization


	Real data application
	Data presentation
	Distance map
	Exploratory analysis using summary statistics
	Choosing the null model
	Choosing the summary statistic
	PCF based envelope test

	Choosing an alternative model to be fitted
	Model verification


	References
	Appendix: solutions and results
	Proposed questions simulation of Homogeneous Poisson process
	Proposed questions Inhomogeneous Poisson process
	Proposed questions Inhomogeneous Poisson / Marked Strauss process
	Proposed questions Inhomogeneous Poisson / Marked AreaInt process
	Proposed questions Inhomogeneous Poisson / Marked Strauss / Marked AreaInt process
	Proposed questions 3D data
	Proposed questions superimposition 2D galaxies / filaments
	Proposed questions distance map
	Proposed questions realization of inhomogeneous Poisson process
	Proposed questions inhomogeneous Pair Correlation Function
	Proposed questions PCF envelope inhomogeneous Poisson
	Proposed questions Astronomical data sampling-theta
	Proposed questions PCF envelope AreaInt for given pattern galaxies


