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Most immunological variation occurs during life

« Human immunological variation is associated with age, CMV infection, stress, smoking,

and metabolic health

« There are only few longitudinal studies of changes in the human immune system
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Smoking changes adaptive immunity with
persistent effects
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We know that age increases risk for immune-associated
pathologies — but how?

 Increased susceptibility to infections
* Decreased response to vaccination

 Increased risk for chronic inflammatory diseases;
cardiovascular, type 2 diabetes, chronic kidney disease

* |ncreased risk for autoimmune diseases

* |ncreased risk for cancers
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Of Mice, Dirty Mice, and Men: Using Mice To Understand

Human Immunology

David Masopust,* Christine P. Sivula,” and Stephen C. Jamcson:k

Mouse models have enabled breakthroughs in our un-
derstanding of the immune system, but it has become
increasingly popular to emphasize their shortcomings
when translating observations to humans. This review
provides a brief summary of mouse natural history, hus-
bandry, and the pros and cons of pursuing basic research
in mice versus humans. Opportunities are discussed for
extending the predictive translational value of mouse re-
search, with an emphasis on exploitation of a “dirty”
mouse model that better mimics the diverse infectious
history that is typical of most humans.  The Journal of
Immunology, 2017, 199: 383-388.

groups called demes that are composed of a dominant breed-
ing male, a hierarchy of females, subordinate males, and ju-
veniles. This results in a high degree of inbreeding thar,
combined with their high mutation rates, contributes to their
ability to adapt quickly to environmental changes (3, 4).
Mice are omnivorous, nocturnal, adapt well to temperawre
extremes, and with their ability to jump and chew through
small openings, they are well poised to rtake advantage of
human food sources in fields, homes, and granaries (5). Al-
though such behaviors prove beneficial for the survival and
propagation of the mouse, consumption and contamination
of food stores have prompted the view of mice as a pest
species. However, hobbyists took an interest in breeding and
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Infection fatality rate (IFR)

SARS-CoV-2 fatality rate
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O’Driscoll et al 2021 Age-specific mortality and immunity patterns of SARS-CoV-2. Nature
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Vaccination efficiency is decreased in older individuals




Age associated changes in cells

* Chronic inflammation

» Imbalance of the intestinal microflora
» Genomic instability

« Telomere shortening

» Epigenetic changes

* Proteome instability

« Deficient macroautophagy

* Non-absorption of nutrients

» Errors in mitochondrial function

» Cellular senescence

« Stem cell insufficiency

« Changes in intercellular communication

Lopez-Otin et al. 2023 Cell.



Chronic immune inflammation is
associated with chronic diseases

Age-related diseaSes
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Inflammageing: chronic inflammation
In ageing, cardiovascular disease,
and frailty

Luigi Ferrucci’* and Elisa Fabbri?

Abstract | Most older individuals develop inflammageing, a condition characterized by elevated
levels of blood inflammatory markers that carries high susceptibility to chronic morbidity,
disability, frailty, and premature death. Potential mechanisms of inflammageing include genetic
susceptibility, central obesity, increased gut permeability, changes to microbiota composition,
cellular senescence, NLRP3 inflammasome activation, oxidative stress caused by dysfunctional
mitochondria, immune cell dysregulation, and chronic infections. Inflammageing is a risk factor
for cardiovascular diseases (CVDs), and clinical trials suggest that this association is causal.
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Letter https://doi.org/10.1038/s43587-025-00888-0

Nonuniversality ofinflammaging across
human populations
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Chronic inflammation associated with multiple pathologies

Cardiovascular diseases
- Atherosclerosis

‘é - Hypertension
- Cardiac failure
////,"P/ ‘g‘\\,\ Neurological diseases ﬁ

Articular damage

SO 0N - Alzheimer's disease e - Osteoporosis
NE e = e
N~/ - parkinson’s disease il \\\\ - Osteoarthritis
! - Depression // T ; - Arthritis
/ ACCELERATED AGING
' % Inflammaging \
+ Oxidative stress T
% Telomere shortening |
g + DNA damaging "
\ ¢ Cellular senescence (SASP)
¢ Reduced autophagy Y/
\ Yy /
) *»* Immunosenescence
y/
Y/ @
Cancers Q ﬂ/s/’ Metabolic diseases
- Carcinoma ),,f%‘ff? - Type Il diabetes
- Melanoma S - Metabolic syndrome
- Breast cancer - Obesity

Barbé-Tuana et al. 2020 Semin Immunopathol
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Clonally expanded CDS T cells patrol the
cerebrospinal fluidin Alzheimer’s disease

https://doi.org/10.1038/s41586-019-1895-7 David Gate'?*, Naresha Saligrama®, Olivia Leventhal', Andrew C. Yang*®, Michael S. Unger®’,
Jinte Middeldorp'??, Kelly Chen', Benoit Lehallier'?, Divya Channappa’,
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peripheralblood mononuclear cells and discovered animmune signature of
Alzheimer’s disease that consists of increased numbers of CD8" T effector memory
CD45RA™ (Tgyra) cells. Inasecond cohort, we found that CD8* Tz, cells were
negatively associated with cognition. Furthermore, single-cell RNA sequencing
revealed that T cell receptor (TCR) signalling was enhanced in these cells. Notably, by
using several strategies of single-cell TCR sequencingina third cohort, we discovered
clonally expanded CD8* Tz, cellsin the cerebrospinal fluid of patients with
Alzheimer’s disease. Finally, we used machine learning, cloning and peptide screens
to demonstrate the specificity of clonally expanded TCRs in the cerebrospinal fluid of
patients with Alzheimer’s disease to two separate Epstein-Barr virus antigens. These
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Early g-amyloid accumulation in the brain is associated with
peripheral T cell alterations
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No increase of CD8+ TEMRA cells in the blood of healthy adults
at high genetic risk of Alzheimer's disease

LETTER (3 Open Access
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Thymic
involution

Genetic
alterations

Loss of
proteostasis

Mitochondrial
dysfunction

Repertoire
reduction

Naive-memory
imbalance

T cell
senescence

Lack of
plasticity

Immuno-
deficiency

Inflammaging

Primary hallmarks
Cause of the damage

Secondary hallmarks
Consequences of the damage

Integrative hallmarks
Integrate the decline

Hallmarks of T cells in aging

The hallmarks grouped into 3 categories, based on their
hierarchical interconnections.

4 primary hallmarks account for the initial damage
Thymic involution,

Genetic and epigenetic alterations

Loss of proteostasis

Mitochondrial dysfunction

4 secondary hallmarks are consequences of primaries
Reduction of the TCR repertoire

Expansion of the memory pool

Lack of effector plasticity

T cell senescence

2 integrative hallmarks are the consequences of the T cell
functional deficiencies

* Immunodeficiency

* Inflammaging

Mittelbrunn and Kroemer (2021) Hallmarks of T cell aging. Nat Immunol



h. Soto-Heredero G, et al. 2023
¥ Annu. Rev. Immunol. 41:181-205

Changes in T cells with aging

Thymus

« Thymic involution
« Stroma deterioration
« Reduced T cell output

Spleen and lymph nodes

« Forced homeostatic proliferation

« Naive to memory profile

- Defective GC responses:
Expansion of Tfh and Tfr
Diminished Tfh/Tfr ratio

Nonlymphoid tissue

Accumulation of:

« Extremely cytotoxic T cells

« Exhausted T cells

« Proinflammatory effector Tregs

T cell senescence

N

Impaired cellular immunity
Poor humoral responses

Tissue damage
Inflammaging

14



CD4+ and CD8+ T cells have different effector functions

@ Phagocytes with
ingested microbes in vesicles

@ Infected cell with microbes
or antigens in cytoplasm

CD4+
effector

T cells
(TH17 cells)

Macrophage || Inflammation,
activation=> killing of
killing of microbes
ingested
microbes

Killing of
infected cell
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T cells differentiate in the thymus
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Age-related changes in the thymus
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# cells per pyl blood »

Aging mostly impacts on the numbers of naive CD8+ T cells

o

Homeostatic proliferation

Thymus
output

T cell replenishment
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T cells differentiate from naive to terminally differentiated T cells (TEMRA)

Stem Cell Central
Memory Memory
CD45R0O - - + + -
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Terminal differentiation of CD8+ T cells into NK-like T cells

Early Intermediate Terminal
differentiation differentiation differentiation
TCR CD8 Phenotypic markers
Ch Oligocional cD28 e = B
CD28null cb27 A ol -
NKR expression CD45RA ++ +/= +i—
CCR? Short telomeres CCR7 ++ + -
. Low proliferation cDB2L oy + 2
. TCR hyporesponsive CD57 _ il ++
(F;olyfunctlongl KLRG1 - +/- ++
ain-of-function
(TCH-independent) Other NKR (KIR, - +/= ++
NKG2, and CD56)
) ) ) ) ) Terminal differentation Functional features
Early differentation Intermediate differentation or senescence Proliferation i + _
= Telomerase ++ + =
activity
Telomeres +++ ++ +
Cytaotoxicity - + ++
Cytokine secretion - + ++
[TNF-tt, IFN-y)
Signaling pathways
TCR signaling + ++ +/—
IL-2 signaling + ++ /=
Pi3K-AKT-mTOR + ++ +f =
signaling
P38MAPK - - +
activation

KLRG1, killer cell lectin-like receptor G1; NKR, natural killer receptor; KIR, killer cell
immunoglobulin-fike receptor; NKG2, natural killer receptor G2, TNF-a, tumor necrosis
factor alpha; IFN-y, interferon gamma; PI3K, phosphatidylinositol-3 kinase; mTOR,
mammalian target of rapamycin.

Pereira and Akbar 2016, Front Immunol



T cells in aged individuals loose costimulatory and activate NK cell markers
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Intracellular changes In T cells

Senescent T cell

NK receptors

Increased
cytotoxicity

Apoptosis

Cell cycle arrest resistance
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Accumulation of SA-BGal-High Cells in Human
Naive T Cell Compartments Reveals a Stress-
Adapted, Senescent-Like State

Andreea Cristina Alexandru !, Genesis Vega Hormazabal 1, Hiroyuki Matsui T, Herbert Kasler ',
Sierra Lore ', Carlos Galicia Aguirre T, Andrea Roberts !, Indra John Heckenbach 2, Ritesh Tiwari !,
Ryan Kwok ', Sydney Becker 3, Eric Verdin 4

Affiliations + expand
PMID: 40661537 PMCID: PMC12259081 DOI: 10.1101/2025.06.10.658841

Abstract

Aging is associated with a decline in immune function termed immunosenescence, characterized by
accumulation of senescent-like immune cells and chronic inflammation, known as inflammaging.
While senescence-associated B-galactosidase (SA-BGal) activity is a well-established senescence
marker, its functional significance and the precise cellular subsets affected within the T cell
compartment remain unclear. Here, we identify and characterize a previously unrecognized subset of
naive CD4* and CD8* T cells displaying high SA-BGal activity that significantly increases with age.
Despite exhibiting hallmark features of senescence such as DNA damage, nuclear envelope disruption,
loss of heterochromatin, and pronounced dysregulation of autophagy and lysosomal pathways, these
SA-BGal-high naive T cells notably lack the canonical senescence marker p21CIP1 and retain robust
proliferative capacity upon activation. Remarkably, naive CD4* SA-BGal-high T cells acquire cytotoxic
properties including NK-like features, granzyme secretion, and the ability to induce paracrine DNA
damage in endothelial cells. Mechanistically, we demonstrate that impaired autophagic flux
contributes significantly to this phenotype. Our findings address critical knowledge gaps regarding
the nature and functional plasticity of senescence-like states in naive T cells, highlighting a novel link
between lysosomal-autophagic dysfunction, cellular stress adaptation, and inflammaging.
Understanding this unique T cell population provides important insights into immune aging and
offers potential targets to mitigate age-associated immune dysfunction and chronic inflammation.

23



Cytomegalovirus (CMV) chronic infection associates with the accumulation
of terminally differentiated T cells
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Age-related changes in gene
expression of PBLs

A study of 15,000 people showed changes in
the expression of 1500 genes, many of them
related to immune functions

Upregulated immune genes
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T cell profiling in old individuals (140 persons over 65 years)
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Large and variable CD8+ TEMRA populations in old people
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Two CD8+ TEMRA cell subpopulations in old individuals

Sorted CCR7'° CD45RAMN CD8+
TEMRA cells are heterogenous

Five populations corresponding to
CD8+ TEMRA cell subpopulations
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CD8+ TEMRA1 and 2 enriched in old
and CMV" individuals

CD8+ TEMRA1 and 2 express CMC1
and EOMES, high CD8A
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cells TEMRA1 and 2 are lower in
cytotoxic markers
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Integrating data on T cells
from seven scRNAseq
studies

Filippov et al 2024. An integrated single-cell atlas
of blood immune cells in aging. NPJ Aging.

NKT
CO, COS™, NCAMT

CD8 Tem

GNOY™. NG~

CD8 Tem
COR™, PASK™

CD4 CTL

GNLYS, NG ™

Tod

TROC™

MAIT
SLC4ATO"

CD4 Tem
KLRGT:. PASK®

Old

UMAR2

UMAPZ

UMAP]

Female

1.0
08
0.6
0.4
0.2

~ 0.0

1.0

- 0.8
- 0.6
- 04
- 0.2

UMAP1

0.0

UMAP2

UmMAF]

Male

0.6
04

UMAPF2

UMAPL B

CD8 Tn

LRANI, CCRT, PASK™ Cel 1ype
COt Th
Tribo : - -. == B cocvem
CD4 Tn et
LRANS, COR™ -. B cee e
CD4 Tem . ---. A
LRRNT. PASK
B coe tem
Treg l AT
FOXPY . 1o
— Tdn l LT
X co¢. coe g
. Tdn
Trto
CDBA CCR7
LRRN3 PASK NKG7
high
FOXP3 SLC4A10 KLRG1

LR

UMAPL



CD8+ T cells and MAIT cells are most consistently declining with age

CD8 naive cells
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The interventions we should focus on to improve our immune responses

Boosters of
Q, & mitochondria
L.

Thymic
regeneration

Elimination of
damaged cells

Prpmoting ¥4 \ Autophagy
naive Tf:ell . inducers
proliferation g@@@ oD >
00090
Q0 @® :
P oee Improving
T, Cellular
*’ reprogramming
responses

T Depletion of
i senescent T cells

Anti-inflammatory

drugs
Mittelbrunn and Kroemer (2021) Hallmarks of T cell aging. Nat Immunol
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