Unveiling Mechanism of Temperature-Sensitive Self-Trapped Exciton Emission in One-Dimensional Hybrid Organic-Inorganic Tin Halide

<u>Yanmei He</u>^{1,*}, Xinyi Cai², Tönu Pullerits^{1,*}, Junsheng Chen³

¹Division of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden. ²Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping,

Sweden.

³Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

*yanmei.he@chemphys.lu.se; tonu.pullerits@chemphys.lu.se;

Lead-free hybrid metal halides showing self-trapped exciton (STE) emission have been recently explored for thermography due to their strong temperature dependence of photoluminescence (PL) lifetime (τ) ,^{1,2} however, the underlying mechanism governing the thermal quenching of STE remains elusive. Herein, we investigated a homogeneous one-dimensional ODASn₂I₆ (ODA, 1,8-octanediamine) nm-scale thin film exhibiting efficient STE emission. The PL decay shows a strong temperature dependence from 275 K ($\tau \sim 1.31 \mu s$) to 350 K ($\tau \sim 0.65 \mu s$) yielding a thermal sensitivity of 0.014 K⁻¹. By employing temperature-dependent transient absorption spectroscopy, we obtained a detailed detailed information about the relaxation processes prior to the STE formation (See below Scheme). Simultaneous analyses of steady-state and time-resolved spectroscopies lead to a self-consistent model where a thermally activated phonon-assisted nonradiative pathway explains the temperature dependence of the PL lifetime via a conical intersection between the ground state and STE potential energy surfaces. These findings offer a deep understanding of temperature-dependent STE dynamics in low-dimensional metal halides.

Scheme: The mechanism summary illustrating the dynamics of temperature-sensitive STE in nm-scale ODASn2I6 thin film.

Acknowledgments

We acknowledge financial support from the Swedish Energy Agency (Grant 50709-1) and the Swedish Research Council VR (2021-05207). Y. H. also acknowledges funding support from the China Scholarship Council (No. 202006150002). J. C. acknowledges funding support from the Novo Nordisk Foundation (NNF22OC0073582).

References

1. S. Yakunin, B. M. Benin, Y. Shynkarenko, O. Nazarenko, M. I. Bodnarchuk, D. N. Dirin, C. Hofer, S. Cattaneo and M. V. Kovalenko, *Nat. Mater.*, 2019, **18**, 846-852.

2. V. Morad, S. Yakunin, B. M. Benin, Y. Shynkarenko, M. J. Grotevent, I. Shorubalko, S. C. Boehme and M. V. Kovalenko, *Adv. Mater.*, 2021, **33**, e2007355.