Exploring the intrinsic charge separation and recombination rates in ligand-tometal charge transfer excited states of bimolecular photocycles.

Neus A. Calvet^a, <u>Christina Wegeberg</u>^a, Mila Krafft,^{a,b} Pavel Chábera^a, Arkady Yartsev^a, Petter

Persson^c

^aDivision of Chemical Physics, Department of Chemistry, Lund University, 22100 Lund, Sweden ^bStratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands ^cDivision of Computational Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden Email: <u>ne6834ca@lu.se</u>

Abstract

The current interest on increasing the efficiency of solar-energy harvesting methods unfolded a competitive search for the ideal photoactive complex for photo-redox catalysis. A crucial part of designing the ideal molecular system with an optimal performance is to elucidate the dynamics of the photoexcited transitions and the charge transfer mechanisms that can intervene in a photo-catalytic cycle for energy production. ^[1-4]

In this work, we aim to elucidate the luminescent ligand-to-metal charge transfer (LMCT) excited state in bimolecular electron transfer reactions, by focusing on rhenium (II) (Re^{II}) complexes with photo-redox active ²LMCT excited states. Thanks to its nanosecond lifetimes and high excited state oxidation potentials, Re^{II} can be reduced by a large range of electron donors.^[5-7]

Ultrafast transient absorption spectroscopy with 20-fs time resolution is therefore used to investigate the the excited state dynamics in solution, and ultimately trace the full photocycle between a Re^{II} complex and the electron donor (Fig 1). The intrinsic rates of the photocycle are unraveled by using high concentrations of electron donor (~5.7 M), which allows to work in the regime of close contact between the electron donor and the Re^{II} complex and disentangle the rate of diffusion.

Fig 1. Photocycle between a rhenium(II) photosensitizer $[Re]^{2+}$, and the electron donor, D. $k_{int} =$ intrinsic decay rate of excited $[Re]^{2+}$; $k_{CS} =$ rate of charge separation; $k_{CR} =$ rate of charge recombination; $k_{CE} =$ rate of cage escape.

References.

[1] Science, 2019, 363, 249 – 253; [2] J. Am. Chem. Soc. 2020, 142, 8565–8569; [3] J. Am. Chem. Soc. 2021, 143, 15661–15673; [4] J. Am. Chem. Soc. 2024, 146, 10286-10292; [5] J. Am. Chem. Soc. 1994, 116, 3599–3600; [6] J. Am. Chem. Soc. 2006, 128, 16494–16495; [7] Inorg. Chem. 2015, 54, 11136 – 11149.