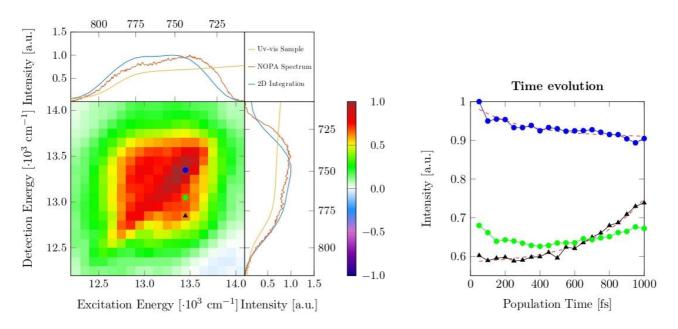
Excitation dynamics in perovskite solar cells probed by photocurrent detected 2D spectroscopy

Edoardo Amarotti¹, Luca Bolzonello², Donatas Zigmantas¹, Nam-Gyu Park³, Tõnu Pullerits¹*


¹Division of Chemical Physics, Lund University, Box 124, 221 00 Lund, Sweden

²*ICFO* - *Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain*

³SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea

*tonu.pullerits@chemphys.lu.se

Over the last decade, perovskite-based solar cells have continued to break efficiency records, reaching over 25%.¹ On the other hand, the ultrafast dynamics that define the photophysics of these systems is not yet completely clear. In this work, we investigate the photophysics of highly efficient perovskite-based solar cells by using the action-detected 2D spectroscopy technique.² In this technique, the sample is excited by a series of 4 phase-modulated pulses which generates an incoherent signal (photocurrent) that is detected via a voltage readout card. We observed relaxation dynamics from high-energy band towards the band-edge of the system (Figure 1).

Figure 1: Left panel: 2D maps of perovskite-based solar cell sample. On the right (top) side are represented the sample absorption spectrum, the NOPA spectrum and the integration along the excitation (detection) energy axis. Right Panel: Time evolution of 2D map at specific coordinates and residuals after exponential fitting.

Acknowledgements

The authors acknowledge financial support from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 945378, SNC Fellowship Program in Korea 2022 under the Korean Academy of Science and Technology (KAIST).

References

- 1. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, Scientific Reports, 2012, **2**, 591.
- 2. F. A. Damtie, A. Wacker, T. Pullerits and K. J. Karki, Physical Review A, 2017, 96, 053830.