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Renata Macaitienė . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ON MATHEMATICAL MODELLING AND SIMULATION OF IMMUNE SYS-
TEM’S RESPONSE IN TUMOR TREATMENT 48
Maksims Marinaki, Manfreds Šneps-Šneppe . . . . . . . . . . . . . . . . . . . . . . . . 48

ON GENERALIZED SHIFTS OF THE LERCH ZETA-FUNCTION 49
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LOCAL FRACTAL FUNCTIONS OF HIGHER ORDER
AND SYMMETRIES

WALDO ARRIAGADA

Wenzhou-Kean University

88 Daxue, Ouhai, Wenzhou, Zhejiang Province, China, 325060.

E-mail: warriaga@kean.edu

In this talk we prove the existence of local fractal functions of the Orlicz-Sobolev class of order
m ≥ 0. The graph of a local fractal function coincides with the attractor of an appropriate iterated
function system (ifs), whose construction is fairly standard. Local fractal functions appear naturally
as the fixed points of the Read-Bajraktarević operator when restricted to a suitable Orlicz-Sobolev
space. Our results extend some of the outcomes obtained by Massopust on Lebesgue and Sobolev
spaces to higher order, dimension and function spaces (where the role of the norm is now played by
a Young function). As an application, we discuss the existence of local fractal functions on analytic
spaces and we highlight the existence of symmetries arising from the complex conjugation.
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ON INTERACTION OF SETS OF PERIODIC SOLUTIONS

SVETLANA ATSLEGA1,2, FELIX SADYRBAEV1,3

Institute of Mathematics and Computer Science, University of Latvia

Rainis boulevard 29, LV-1459 R̄ıga, Latvia

Latvia University of Life Sciences and Technologies, Institute of Mathematics and Physics
2 Lielā street, Jelgava, LV-3001, Latvia

Daugavpils University
13 Vien̄ıbas street, Daugavpils, LV-5401, Latvia

E-mail: svetlana.atslega@lbtu.lv

A class of autonomous ordinary differential equations of the second order is considered, which is
characterized by the existence of several period annuli (the sets of periodic solutions).

The number of solutions to the Neumann boundary value problem is studied. The bifurcation
diagrams are constructed. The estimates of the number of solutions are obtained.

Perturbations of the autonomous equations with period annuli by external periodic force are
studied. The chaotic behavior of solutions to the perturbed equation is observed. Visual evidences
of chaotic behavior are presented. The Lyapunov exponents are used for the analysis of the sensitive
dependence of solutions on the initial data.

REFERENCES

[1] S. Atslega and F. Sadyrbaev. On periodic solutions of Liénard type equations. Mathematical Modelling and Anal-
ysis, 18 (5):708–716, 2013.

[2] Y. Kozmina and F. Sadyrbaev. On a Maximal Number of Period Annuli. Abstract and Applied Analysis, 2011
Article ID 393875, 8 pages.
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EXPLICIT TIME INTEGRATION OF SOURCE-FREE
DYNAMICAL SYSTEMS

JĀNIS BAJĀRS, ANNA SIMINA

Faculty of Physics, Mathematics and Optometry, University of Latvia

Jelgavas street 3, Riga LV-1004, Latvia

E-mail: janis.bajars@lu.lv, as16069@students.lu.lv

The flow ϕt of a source-free dynamical system ẋ = f(x), i.e., with a divergence-free vector field:
divf(x) = 0, is phase volume-preserving: det ∂ϕt(x)

∂x = 1 for all t and x, a desirable property to
be maintained by a numerical time integration method. Feng and Shang have shown in [1] that
every divergence-free vector field f : Rn → Rn can be written as the sum of n− 1 vector fields f =
f1,2+f2,3+· · ·+fn−1,n, where each of fk,k+1 is Hamiltonian in the variables (xk, xk+1), i.e., there exist

functions Hk,k+1 : Rn → R such that fk,k+1 =
(
0, . . . , 0,−∂Hk,k+1

∂xk+1
,
∂Hk,k+1

∂xk
, 0, . . . , 0

)T

. Considering
this decomposition, a phase volume-preserving numerical method is obtained by applying a splitting
method with symplectic substeps, which are volume-preserving. Different splitting approaches allow
the construction of symmetric as well as higher-order volume-preserving methods [2]. In general,
the obtained methods are one-dimensionally implicit unless ∂fi(x)

∂xi
= 0 for all i = 1, . . . , n.

To address the question of fully explicit symplectic integration of general (nonseparable) Hamilto-
nian dynamics, Tao in [3] proposed symplecticity-preserving time integration methods in an extended
phase space by introducing a mechanical restraint that binds together two copies of the original phase
space. In [3], good long-time numerical simulation properties were demonstrated, and an error bound
for integrable dynamics was derived. In this work, we propose explicit time integration methods
of source-free dynamical systems in an extended phase space, similarly to [3], by considering the
augmented Hamiltonians: H̄k,k+1(x1, . . . , xn, y1, . . . , yn) = HA

k,k+1(x1, . . . , xk−1, yk, xk+1, . . . , xn) +

HB
k,k+1(x1, . . . , xk, yk+1, xk+2, . . . , xn)+

1
2ω

(
(xk − yk)

2 + (xk+1 − yk+1)
2
)
, where ω is a binding con-

stant of system’s variable x with its copy y. With augmented Hamiltonians, we obtain vector fields

f̄k,k+1 =

(
0, . . . , 0,−

∂HA
k,k+1

∂xk+1
− ω(xk+1 − yk+1),

∂HB
k,k+1

∂xk
+ ω(xk − yk), 0, . . . , 0,

0, . . . , 0,−
∂HB

k,k+1

∂yk+1
+ ω(xk+1 − yk+1),

∂HA
k,k+1

∂yk
− ω(xk − yk), 0, . . . , 0

)T

,

which allow the construction of explicit splitting methods for general source-free dynamical systems.
The properties of proposed explicit numerical methods are explored and numerically demonstrated.
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ON THE LAPLACE TRANSFORM OF THE RIEMANN
ZETA-FUNCTION II
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The present talk is devoted to the Laplace transform

L
(
s, |ζ|2k

)
=

∫ ∞

0

∣∣∣∣ζ (1

2
+ ix

) ∣∣∣∣2ke−sxdx

of the Riemann zeta-function ζ(s) with complex variable s, where k ∈ N. In [1], only the case k = 2
has been considered. In [2] we had the case with the odd k. This report is a more general case of
the transform for arbitrary k using the G Meijer function.
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INVESTIGATION OF A DISCRETE STURM–LIOUVILLE
PROBLEM WITH TWO-POINT NONLOCAL BOUNDARY
CONDITION
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We investigate SLP with one classical Dirichlet Boundary Condition (BC) or Neumann BC:

−u′′ = λu, t ∈ (0, 1), λ ∈ C, (1)
u(0) = 0 or u′(0) = 0, (2d, n)

and another two-points Nonlocal Boundary Condition (NBC)

u(1) = γu(ξ), u′(1) = γu′(ξ), u(1) = γu′(ξ) or u′(1) = γu(ξ), (31,2,3,4)

where NBC’s parameter γ ∈ R and ξ ∈ [0, 1].
We introduce a uniform grids in [0, 1]: ωh = {tj = jh, j = 0, n}, ωh = {tj = jh, j = 1, n− 1}

with stepsizes hj ≡ h and ωh
1/2 = {tj+1/2 = (tj + tj+1)/2, j = 0, n− 1} with stepsizes hj+1/2 =

tj+1/2 − tj−1/2 ≡ h. Additionally, we use a nonuniform grid ωh
1/2 = ωh

1/2 ∪ {t−1/2 = 0, tn+1/2 = n}
where stepsizes h1/2 = t1/2− t−1/2 = h/2, hn+1/2 = tn+1/2− tn−1/2 = h/2. We make an assumption
that ξ = m/n is located on the grid ωh. We approximate differential SLP (1)—(31,2,3,4) by the
discrete SLP, using natural approximation of derivative δ:

−δ2U = λU, t ∈ ωh, λ ∈ Cλ, (4)

U0 = 0 or (δU)0 = 0, (5d, n)

Un = γUm, (δU)n = γ(δU)m, Un = γ(δU)m or (δU)n = γUm, (61,2,3,4)

We investigate discrete SLP and analyze how complex eigenvalues of this problem depend on the
parameters of the two-points NBC. Some results for the both SLP were presented in [1; 3].

REFERENCES
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HIGH ORDER SECOND DERIVATIVE DIAGONALLY
IMPLICIT MULTISTAGE INTEGRATION METHODS FOR
ODES

MICHAŁ BRAŚ
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For the numerical solution of the m-dimensional system of ordinary differential equations (ODEs)

y′(x) = f
(
y(x)

)
, y(x0) = y0, x ∈ [x0, x̄],

we consider the class of second derivative diagonally implicit multistage integration methods (SDIM-
SIMs). These methods are a specific subclass of second derivative general linear methods, which are
represented in the following form:

Y
[n]
i = h

s∑
j=1

aijf
(
Y

[n]
j

)
+ h2

s∑
j=1

aijg
(
Y

[n]
j

)
+

r∑
j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i = h

s∑
j=1

bijf
(
Y

[n]
j

)
+ h2

s∑
j=1

bijg
(
Y

[n]
j

)
+

r∑
j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

where g(·) = f ′(·)f(·).
In [1] methods of order p ≤ 4 were investigated In this talk, we aim to extend this research by

investigating methods of order p ≥ 5 as presented in the [2]. Developing methods of higher order
requires establishment of conditions based on the parameters of the methods. These conditions, in
the form of a system of polynomial equations, cannot be obtained and solved through symbolic ma-
nipulation tools. Therefore, we propose an approach for constructing implicit and explicit SDIMSIM
with Runge–Kutta stability property using a Fourier series method variation, previously utilized for
constructing high-order general linear methods. Examples of fifth and sixth order explicit and im-
plicit SDIMSIMs, suitable for both non-stiff and stiff differential systems in a sequential computing
environment, are provided. Additionally, the effectiveness of the newly derived methods is validated
through numerical experiments.

This is a joint work with Ali Abdi, Mohammad Sharifi and Gholamreza Hojjati from University
of Tabriz, Iran.
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RECENT ADVANCES IN THE NUMERICAL SOLUTION
OF ORDINARY AND FRACTIONAL DIFFERENTIAL
EQUATIONS
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Recently, the class of Runge–Kutta methods named Hamiltonian Boundary Value Methods (HB-
VMs) has been introduced for the efficient numerical solution of Hamiltonian problems [5; 6]. This
is a class of energy-conserving, low-rank R–K methods, which relies on the expansion of the vector
field along the Legendre polynomial basis. In this respect, the methods can be also regarded as
spectral methods in time and, in fact, they are able to reach a spectral accuracy [1]. Later on,
this approach has been extended to cope with different kinds of differential problems [3], including
fractional differential equations [7]. Concerning these latter equations, however, only recently, the
basis for the expansion has been tailored for the problem at hand [2], thus resulting into a much
more efficient procedure [4].

In this talk, the main facts concerning this approach will be recalled, along with the more recent
application for solving fractional differential equations.
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HYERS-ULAM STABILITY OF IMPLICIT VOLTERRA
EQUATIONS ON TIME SCALES
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Consider nonlinear k-th order Volterra integrodifferential equation on an arbitrary time scale T

x∆
k

(t) = f

(
t, x(t), x∆(t), . . . , x∆

k

(t),

∫ t

t0

k(t, s, x(s), x∆(s), . . . , x∆
k

(s))∆ s

)
(1)

with initial conditions

x∆
i

(t0) = xi, i = 0, 1, 2, . . . , k − 1, t0, t ∈ IT = [t0,+∞) ∩ T.

We reduce equation (1) to implicit Volterra integral equation

z(t) = F

(
t, z(t),

∫ t

t0

K(t, s, z(s))∆ s

)
, t0, t ∈ IT = [a,+∞) ∩ T, (2)

where z : IT → Rn(k+1) is the unknown function, K : IT × IT ×Rn(k+1) → Rn(k+1) be rd-continuous
in its first and second variable, L : IT → R be rd-continuous, γ > 1, β = L(s)γ,

|K(t, s, z)−K(t, s, z′)| ≤ L(s)|z − z′|, (z, z′) ∈ Rn(k+1), s < t,

|F (t, z, w)− F (t, z′, w′)| ≤M(|z − z′|+ |w − w′|), m = sup
t∈IT

1

eβ(t, t0)

∣∣∣∣F (t, 0,∫ t

t0

K(t, s, 0)∆ s

∣∣∣∣ <∞.

If M(1 + 1/γ) < 1, then the integral equation (2) has a unique solution z ∈ Ck
β(IT;Rn(k+1)), where

Ck
β(IT;Rn(k+1)) be the Banach space of rd-continuous functions such that

sup
t∈IT

max0≤i≤k |x∆
i

(t)|
eβ(t, t0)

<∞.

We also prove that equation (1) is Hyers-Ulam stable.
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LONG STANDING AND NEVER OLD QUESTION: WHO
IS A BOSS (STABILITY OR APPROXIMATION)
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Adaptive grids in space and time are used to fit the grid points to the dynamics of the solution
and to minimize the approximation/truncation error.

At the same time uniform grids are used in many recent big data projects due to two very
important properties: high order approximations can be constructed directly on uniform grids and
the obtained structure of grids is well suited for parallel computing techniques. As a consequence
different modifications and new discrete schemes are proposed which try to preserve the uniformity
of the grids as close as possible. The well known NFL theorem predicts that some additional costs
should be expected. In our talk we consider some new interesting discrete schemes and show that
the stability analysis should be tailored to each source of approximation errors.

A linear hyperbolic problem is approximated by the following implicit symmetrical three-level
scheme

Un+1 − 2Un + Un−1

τ2
+ β

Un+1 − Un−1

2τ
+Ah

Un+1 + Un−1

2
= Fn, (1)

U0 = u0, U1 = u0 + τv0.

In [1], this scheme is modified for the specific quasi-uniform time grid when at some grid points
the lengths of grid steps are doubled or halved. The most valuable property of this scheme is that
the approximation is still done on uniformly distributed grid points, thus basic advantages of such
discrete schemes are preserved.

By making a full stability analysis of interpolation errors introduced by the proposed algorithm
we prove that the cases of doubling and reducing twice the time steps lead to totally different
error accumulation rates. Results of computational experiments are presented and they confirm the
accuracy of theoretical error estimates.

We also investigate the difference in the stability of the backward Euler (BE) finite difference
scheme and the discontinuous Galerkin (DG) finite element scheme when both schemes are used to
solve one dimensional parabolic problem on dynamically shifted uniform space grids. The theoretical
analysis proves that the accumulation of interpolation and projection approximation errors are quite
different.

Finally we ask the question if adaptive grids are really required and are more efficient than uniform
grids?
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MODELLING OF BACTERIAL PLUME FORMATION IN
A CIRCULAR CONTAINER
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Microorganisms such as bacteria Escherichia coli move around either towards attractants (e.g.
food) or away from repellants (e.g. toxins). This process is called chemotaxis, and it allows popu-
lations of bacteria to self-organize and form patterns [1]. One of the most widely used methods to
model chemotaxis is the Keller-Segel approach [2].

E. coli pattern formation can be modelled using a system of reaction-diffusion-chemotaxis equa-
tions, representing dynamics of bacteria, self-excreted chemoattractant, and oxygen [3]. In this work,
the model was coupled with Navier-Stokes equations to improve the modelling of plume formation
[4]. The dimensionless 2D in space model is governed by these equations:

∂n

∂t
+
(
u⃗ · ∇⃗

)
n = Dn∆n− χ∇(n∇c) + αn

(
1− n

o

)
(1)

∂c

∂t
+
(
u⃗ · ∇⃗

)
c = Dc∆c+

n

1 + βn
− c (2)

∂o

∂t
+
(
u⃗ · ∇⃗

)
o = Do∆o− λn (3)

∂ω

∂t
+
(
u⃗ · ∇⃗

)
ω = ν∆ω − κ

∂n

∂x
(4)

∆Ψ = −ω, (x, y) ∈ (0, l)× (0, h), t > 0, (5)

where n(x, y, t), c(x, y, t), and o(x, y, t) represent cell density, chemoattractant, and oxygen respec-
tively, ω(x, y, t) is the vorticity, and Ψ(x, y, t) is the stream function. Together with appropriate
initial and boundary conditions, the governing equations form a boundary-value problem, which
was solved using finite difference technique.

The aim of this work is to investigate the effects of model parameters on bacteria pattern forma-
tion, with special emphasis on plume formation.
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In many applications, it is necessary to compute numerical solutions of one or many ordinary
differential equations of fractional order over many time steps. At the core of such numerical solvers,
we typically find schemes for the approximate evaluation of Riemann-Liouville integrals. Due to the
inherent memory properties of the associated differential and integral operators, such computations
require a significant amount of computer memory and a relatively large runtime if straightforward
disctretization approaches are used. More sophisticated techniques, such as algorithms based on
the FFT, can reduce the runtime significantly but not the memory requirements. Other concepts
like, e.g., nested meshes reduce the memory demands but come with a significant administrative
overhead. The goal of this talk is to present a class of algorithms that simultaneously address both
the runtime and the memory footprint issues.

Specifically, our methods are based on so-called diffusive representations of the Riemann-Liouville
integral operator. This allows us to handle the process memory in an implicit manner, thus imme-
diately reducing the algorithm’s required computer memory to an order of magnitude comparable
to that of an algorithm for local problems. Many different analytic variants of such representations
exist, and each of them allows multiple combinations of algorithms for its numerical evaluation. It
is therefore necessary to identify special cases that admit a particularly accurate numerical approx-
imation with a small number of arithmetic operations, thus additionally addressing the runtime
matter in a satisfactory way.

The work described in this talk is performed within a joint project with Renu Chaudhary and
Afshin Farhadi (THWS) and André Schmidt and Paul E. Haacker (Institute of Nonlinear Mechanics,
Universität Stuttgart). This project is supported by the German Federal Minsitry of Education and
Research (BMBF) under Grant 05M22WHA.
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POROSITY
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To simulate thermal decomposition of biomass we define every biomass as three organic com-
pounds. Organic compound thermal decomposes in volatile part and carbon part [2]. Coal combus-
tion are described with equation

C + θO2 → 2(1− θ)CO + (2θ − 1)CO2. (1)

Reactions are modeled using Arrhenius kinetics. To determine changes off biomass that microwave
pretreatment gives we estimate these changes using porosity. Our objective is to determine how
porosity changes in biomass affects CO and CO2 concentration in mathematical model. Gases we
model using the Darcy law, ideal gas law and mass balance equation [1]. Numerical solutions were
found using finite deference scheme and finite volume method in program MatLab.
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This talk deals with the numerical treatment of the following mixed Volterra-Fredholm integral
equation

(I + µV K)f = g,

where µ ∈ R\{0}, f is the unknown function, g is a given right-hand side, I is the identity operator,
V is the Volterra operator given by

(V f)(y) =

∫ y

−1

h(x, y)f(x)(y − x)ρ(1 + x)σdx, ρ, σ > −1, y ∈ [−1, 1],

with h an assigned kernel, and K is the Fredholm operator defined as

(Kf)(y) =

∫ 1

−1

k(x, y)f(x)(1− x)α(1 + x)βdx, α, β > −1, y ∈ [−1, 1],

with k a known kernel.
A global approximation method of Nyström type based on a mixed Gauss-product cubature

formula is developed to approximate the solution f in suitable weighted spaces equipped with the
uniform norm. Stability and convergence results are discussed and numerical tests are given to show
the good performance of the method.
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This study integrates Fractional Differential Equations (FDE) with Neural Networks for the mod-
elling of dynamical systems. Inspired by concepts like Neural Ordinary Differential Equations (Neu-
ral ODE) [1] and fractional calculus within neural systems [2], we propose the Neural FDE [3].
In this neural network architecture, parameterised by θ (representing weights and biases), the ob-
jective is to determine the function fθ of a Fractional Differential Equation of order α (equation
(1)), ensuring that the solution to (1) accurately fits provided data (a time series), by adjusting the
weights and biases within fθ [3],

C
0 D

α
t h(t) = fθ(t,h(t)) with h(t0) = h0, α = αϕ. (1)

Here, C
0 D

α
t h(t) denotes the Caputo fractional derivative [4], where h(t) represents the state of

the dynamical system at time t, and h(t0) = h0 is the initial condition. As this model introduces
an additional parameter (α) compared to the Neural ODE, the order of the Fractional Differential
Equation, α, is also learned by another neural network, αϕ, with parameters ϕ.

This hybrid fractional differential equation can then be used for making future predictions or
predicting missing data. The solution of (1) is obtained numerically, with the values of fθ(t,h(t))
provided by the neural network.

We limit our consideration to α ∈ (0, 1), as it finds applicability in various scenarios and simplifies
the formulation.
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MODELLING AND SIMULATION OF SYSTEMS WITH
COMPLEX CHARACTERISTICS: CERTAINTIES,
UNCERTAINTIES AND COMPROMISES

NEVILLE J FORD
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E-mail: njford@chester.ac.uk

In this talk we discuss the link between real world systems and the development of appropriate
model equations. Our focus is on problems that involve a history, delay or after-effect, and we begin
with a discussion of how these phenomena can be reflected in relatively simple model equations,
applying classical results from [2] and [4]. This leads to a discussion of characteristic values and
eigenfunctions and an understanding of the characteristics of the solution space and the limitations
imposed by modelling choices. Here we apply more recent insights from [6].

We discuss approaches to model selection and parameter estimation and we consider how to match
the purpose of the model with its formulation. We give examples that show how different modelling
paradigms can be necessary to develop effective models in different circumstances (sse, for example,
[3] for further details on this theme).

We use the recent COVID-19 pandemic as a case study where model equations were widely used
but poorly understood (see [5] and [1]). We give examples that show why the conclusions drawn
from the model may be quite unhelpful to the application and we provide some ideas about how to
avoid these problems arising in future modelling projects.
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A NONLINEAR BACKWARD DIFFUSION ALGORITHM
FOR IMAGE RESTORATION
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We discuss the recent image processing methodology introduced in [2] in the context of nonlinear
diffusive PDEs (see also [1; 3; 4; 5; 7]). A corrupted image u is represented in a continuous framework
and used as initial guess for the evolution equation:

∂u

∂t
=

√
∥∇u∥2

1 + ∥∇u∥2
∆u, (1)

where ∇ and ∆ denote the gradient an the Laplace operator, respectively. Equation (1) is defined
on a rectangle and Neumann conditions are imposed on the boundaries. Contrary to the classical
approaches, descending for example from the pioneering work of Perona & Malik [6], the nonlinear
diffusion coefficient depends locally on the magnitude of ∥∇u∥ and grows proportionally to this
quantity. An ad-hoc discretization scheme uses centered finite-differences scheme for the space vari-
able and it is implemented on two interlaced grids. Euler’s scheme is applied for time discretization
going backwards in time. The aim is to smooth out the regions of almost uniform shade and empha-
size discontinuities. The proposed methodology is quite efficient as satisfactory results are obtained
after only one time step of appropriate size. The algorithm is well-suited for edge detection and
segmentation problems. We show some applications in the case of images affected by blur and noise.
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ON DISCRETE SHIFTS OF THE MELLIN TRANSFORM
OF THE RIEMMAN ZETA-FUNCTION
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We consider the Mellin transform Z(s), s = σ + it, of the square of the Riemann zeta-function
ζ(s), i.e.,

Z(s) =

∫ ∞

1

|ζ(1/2 + ix)|2x−s dx,

and the approximation of analytic functions by discrete shifts Z(s+ ikh) with h > 0 and k ∈ N0 =
N ∪ {0}. Let D = {s ∈ C : 1/2 < σ < 1}, and H(D) denote the space of analytic functions on D
equipped with the topology of uniform convergence on compacta.

In the report, we will discuss the following theorem, for details, see [1].

Theorem 1. For h > 0, there exists a non-empty closed set Fh such that, for every compact set
K ⊂ D, f(s) ∈ Fh and ε > 0,

lim inf
T→∞

1

N + 1
#

{
0 ⩽ k ⩽ N : sup

s∈K
|Z(s+ ikh)− f(s)| < ε

}
.

Moreover, the limit

lim
T→∞

1

N + 1
#

{
0 ⩽ k ⩽ N : sup

s∈K
|Z(s+ ikh)− f(s)| < ε

}
exists and is positive for all but at most countably many ε > 0.
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NUMERICAL APPROACHES TO SOLVE AN INVERSE
PROBLEM FOR A FRACTIONAL DIFFUSION-WAVE
EQUATION WITH MULTI-TERM FRACTIONAL
POWERS OF MINUS LAPLACIAN
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Two numerical approaches designed using MATLAB to recover the unknowns of the following
fractional diffusion-wave equation with multi-term fractional powers of minus Laplacian

Dα
t u(x, t) =

n∑
j=1

bj(−∆)βju(x, t) + f0(x, t), (1)

are considered. The first approach is based on the minimization of the error of the Laplace trans-
form of the observation function minus the Laplace transform of the observation function with
the unknowns as variables and the second approach uses location of poles of Laplace transform of
observation function. Finally, a comparison of the two approaches is presented.

Uniqueness for the solution is proved theoretically, also by means of location of poles.
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JOINT MIXED LIMIT THEOREM FOR EPSTEIN AND
HURWITZ ZETA-FUNCTIONS
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In the talk, we will present some known results on the joint asymptotic behaviour of zeta-functions
having and having no Euler’s product over prime numbers. Moreover, we will discuss a new result
for the Epstein and Hurwitz zeta-functions, more precisely, we will prove the joint probabilistic limit
theorem in terms of the weak convergence of probability measures on C2 defined by means of these
zeta-functions.

We recall the definitions of the mentioned functions.
The Epstein zeta-function ζ(s;Q) was introduced by P. Epstein in [1]. Let Q be a positive definite

quadratic n×n matrix and Q[x] = xTQx for x ∈ Zn. The Epstein zeta-function ζ(s;Q), s = σ+ it,
is defined, for σ > n

2 , by the series ζ(s;Q) =
∑

x∈Zn\{0}(Q[x])−s, and can be continued analytically

to the whole complex plane, except for a simple pole at the point s = n
2 with residue πn/2

Γ(n/2)
√
detQ

.
The Hurwitz zeta-function ζ(s, α) was introduced in [2]. The function ζ(s, α) with a fixed parame-

ter α, 0 < α ≤ 1, is defined, for σ > 1, by ζ(s, α) =
∑∞

m=1(m+α)−s, and has analytic continuation
to the whole complex plane, except for a simple pole at the point s = 1 with residue 1.
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FRACTIONAL CALCULUS OF ZETA FUNCTIONS

EMANUEL GUARIGLIA

Wenzhou-Kean University

88 Daxue Rd, 325060 Wenzhou, China

E-mail: eguarigl@kean.edu

This talk outlines fractional calculus of zeta functions. The main results are based on a com-
plex generalization of the Grünwald-Letnikov fractional derivative. The functional equations can
be rewritten in a simplified form. Thus, we reduce their computational cost. Moreover, for the
case of the Riemann ζ function we propose a quasisymmetric form of the corresponding functional
equation. The second part of this talk deals with the link with distribution of prime numbers. In
particular, we show some results on free-zero regions for this class of functions. Finally, we discuss
the representation of these functions in terms of Euler products.
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LOCAL ERROR ESTIMATION FOR IMPLICIT-EXPLICIT
GENERAL LINEAR METHODS
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We investigate implicit-explicit methods for differential systems with stiff and non-stiff parts.
Stage order and order conditions are formulated and estimation of local discretization errors in
fixed and variable stepsize environments is discussed. We also describe the construction of such
methods with desirable accuracy and stability properties. This is a joint work with Angela Cardone,
University of Salerno, and Giuseppe Izzo, University of Naples.
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APPROXIMATION OF ANALYTIC FUNCTIONS BY
SHIFTS OF ABSOLUTELY CONVERGENT DIRICHLET
SERIES RELATED TO PERIODIC ZETA-FUNCTIONS

MINDAUGAS JASAS
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Let a = {am : m ∈ N} and b = {bm : m ∈ N0 = N ∪ {0}} be two periodic sequences of
complex numbers, 0 < α ≤ 1 and θ > 1

2 are fixed parameters, vu(m) = exp
{
−
(
m
u

)θ}
,m ∈ N, and

vu(m,α) = exp
{
−
(
m+α
u

)θ}
,m ∈ N0,with u > 0. Let s = σ + it denote a complex variable. We

consider the Dirichlet series

ζu(s; a) =

∞∑
m=1

amvu(m)

ms
and ζu(s, α; b) =

∞∑
m=0

bmvu(m,α)

(m+ α)s

which are absolutely convergent in any half-plane σ > σ0 with finite σ0. We obtain the following
results:

1. Approximation of a class of analytic functions by continuous shifts
ζuT

(s+ iτ ; a), τ ∈ R, with multiplicative sequence a, and uT → ∞ and uT ≪ T 2.
2. Approximation of a class of analytic functions by discrete shifts
ζuN

(s+ ikh; a), h > 0, k ∈ N0, with multiplicative sequence a, and uN → ∞ and uN ≪ N2.
3. Joint approximation of a class of pairs of analytic functions by continuous shifts(

ζuT
(s + iτ ; a), ζuT

(s + iτ, α; b)
)
, τ ∈ R, with multiplicative sequence a, and uT → ∞ and

uT ≪ T 2.
4. Joint approximation of a class of pairs of analytic functions by discrete shifts(

ζuN
(s + ikh1; a), ζuT

(s + ikh2, α; b)
)
, h1 > 0, h2 > 0, k ∈ N0, with multiplicative sequence a,

and uN → ∞ and uN ≪ N2.
More precisely, let K1,K2 be compact sets of the strip D = {s ∈ C : 1

2 < σ < 1} with connected
complements, f1(s) continuous, nonvanishing and f2(s) continuous functions on K1 and K2, and
analytic in interior of K1,K2, respectively.

Suppose that the set {(h1 log p : p ∈ P), (h2 log(m+α) : m ∈ N0), 2π} is linearly independent over
the field of rational numbers. Then the limit

lim
N→∞

1

N + 1
#
{
0 ≤ k ≤ N : sup

s∈K1

|ζuN
(s+ ikh1; a)− f1(s)| < ε1,

sup
s∈K2

|ζuN
(s+ ikh2, α; b)− f2(s)| < ε2

}
exists and is positive for all but at most countably many ε1 > 0 and ε2 > 0. The above results form
PhD thesis of the author.
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REGULARITY RESULTS FOR VERY WEAK
TIME-PERIODIC POISEUILLE-TYPE SOLUTION WITH
MINIMALLY REGULAR FLOW RATE
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In this presentation, we provide a summary of our results concerning the time-periodic very weak
solutions of the heat equation with a non-local additional condition of the prescribed flux

F (t) =

∫
σ

U(x, t)dx

and their regularity properties. Specifically, we present an example of a function F (t) that belongs
to L2(−π, π) but F /∈ W β,2(−π, π) for 0 < β < 1. The very weak solution corresponding to such
flux F , has the regularity as stated in the definition (see [1],[2]) and it is not better. Furthermore,
we discuss results that suggest a correlation between the improvement of solutions regularity and
the increase in regularity of the given function F .
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NOTES ON SIMULTANEOUS APPROXIMATION BY THE
CLASS OF ZETA-FUNCTIONS
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The theory of universality focuses on the approximation of analytic functions by the shifts of
certain zeta-functions. In a much more complicated situation, we touch on studying approximation
by the wide classes of zeta-functions. One such class is the so-called Selberg-Steuding class S̃, which
was introduced by A. Selberg in [3] and modified by J. Steuding in [4], and is defined by Dirichlet
series L(s) satisfying certain axioms.

The first approximation result related to the class S̃ was obtained by J. Steuding in [4] and later
improved by H. Nagoshi and J. Steuding in [2]. R. Kačinskaitė, A. Laurinčikas and B. Žemaitienė
have obtained [1] the joint universality theorem for L-functions belonging to the Selberg-Steuding
class S̃. More precisely, we have shown a result about simultaneous approximation of a collection
of analytic functions

(
f1(s), . . . , fr(s)

)
in the strip

{
s ∈ C : σL < σ < 1

}
by a collection of shifts(

L(s + ia1τ), . . . , L(s + iarτ)
)
, L(s) ∈ S̃, where σL > 1

2 is a number depending on L, and real
algebraic numbers a1, . . . , ar are linearly independent over the field of rational numbers Q.

In the talk, we discuss two results on the investigation of joint universality property for L(s) ∈ S̃,
i.e., we present the joint functional independence and denseness for the above-mentioned collection.
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STALLING IN QUEUING SYSTEMS WITH
HETEROGENEOUS CHANNELS
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In the talk, a model of stalling in the queueing system (QS) with any number of different capacities
heterogeneous servers will be discussed and some new results published in [1] will be presented. The
model of stalling in QSs with two heterogeneous servers has been considered in [2], where the explicit
probabilities of steady states were derived.

We will discuss the optimization of a stalling buffer as well, and we will show that stalling helps us
to solve the slow server problem under an appropriate choice of stalling buffer size, making the slow
servers usable under various values of system load. Moreover, some applications of the developed
model in heterogeneous server clusters and in work productivity modelling for forest harvesting
applications will be presented.
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A NONLINEAR MATHEMATICAL MODEL OF THE
COURSE AND THERAPY OF RHEUMATOID
ARTHRITIS AND ITS REALIZATION
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Mathematical models of immune mediated disorders provide an analytic platform in which we can
address specific questions concerning disease immune dynamics to dictate the choice of treatment.
Rheumatoid arthritis is a systemic autoimmune disease characterized by the joint inflammation
and the cartilage destruction. Autoreactive B lymphocytes represent the integral elements of the
pathophysiology of rheumatoid arthritis. Immune balance between the effector and the regulatory
T cell subsets guide the autoreactive B cell fate and play a cardinal role in disease severity. Us-
ing non-linear differential equations, we developed a novel mathematical model that describes the
immunopathogenesis of rheumatoid arthritis [1; 2]. The model explores the functional dynamics
of cartilage destruction during disease progression, in which a system of differential equations de-
ciphers the interactions between autoreactive B lymphocytes and T helper cells. As the further
task, we present here the refined model of the disease course in which the immunomodulatory effect
of IL-6, – a molecule that drives the cross-talk of pro-inflammatory and regulatory subsets of T
lymphocytes, is explained. IL-6 targeting is also taken into consideration in the disease treatment
model, in which the modalities of treatment with methotrexate and tocilizumab in a separate or
combined scheme are addressed. For such treatment model, the corresponding Cauchy problem is
posed and its solution is found. In conclusion, we propose a novel mathematical model that best
describes the readouts of the course and treatment outcomes of rheumatoid arthritis and, therefore,
may take a rapid pace towards its implementation in biomedical and clinical research.
Acknowledgements. Grant support: Shota Rustaveli National Science Foundation of Georgia
(grant # STEM 22-360).
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LEARNING HAMILTONIAN DYNAMICS WITH
STRUCTURE-PRESERVING NEURAL NETWORKS AND
DIMENSIONALITY REDUCTION
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Data-driven approaches employing structure-preserving algorithms, such as symplectic neural net-
works known as SympNets [1], have gained recognition for learning Hamiltonian systems’ dynamics.
Despite their promising results, the challenge of high dimensionality persists. In this work, we
investigate dimensionality reduction techniques to model Hamiltonian systems effectively in lower-
dimensional subspaces, thereby reducing training times while preserving prediction accuracy.

We focus on learning nonlinear localized wave solutions in a one-dimensional crystal lattice model,
as the lattice can be of an arbitrary dimension and, as we show, the problem lends well to being
modeled in a lower-dimensional subspace. That is done by employing dimensionality reduction
techniques, such as the non-symplectic Proper Orthogonal Decomposition (POD) [2] and geometric
structure-preserving Proper Symplectic Decomposition (PSD) [3].

Moreover, we extend our previous work [4] by imposing symplectic neural networks architecture’s
map to be symmetric, i.e., equal to its adjoint map, as proposed in [5], a characteristic inherent
to Hamiltonian system flows. Our results demonstrate that incorporation of the additional flows’
property in symplectic neural networks together with structure-preserving dimensionality reduction
enhances model predictions and their valid prediction time (VPT) even further.
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ON CONVERGENCE CONDITIONS IN
SELF-REGULARIZATION OF ILL-POSED PROBLEMS BY
PROJECTION METHODS

URVE KANGRO, UNO HÄMARIK
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We consider an operator equation

Au = f, f ∈ R(A) ̸= R(A),

where A ∈ L(E,F ) is the linear continuous operator between Banach spaces E and F . Instead of
the exact right-hand side f we have only an approximation fδ ∈ F satisfying condition ∥f−fδ∥ ≤ δ
with known δ. We consider projection methods. Let En ⊂ E, Zn ⊂ F ∗, n ∈ N, be finite-dimensional
nontrivial subspaces which have the role of approximating the spaces E and F ∗, respectively. Let
Qn be the linear operator defined by

Qn : F → Z∗
n ∀g ∈ F, zn ∈ Zn : ⟨Qng, zn⟩Z∗

n,Zn
= ⟨zn, g⟩F∗,F . (1)

Then the finite-dimensional approximation un ∈ En to the solution u∗ can be found from the
equation

QnAun = Qnf
δ. (2)

Under conditions dim (En) = dim (Zn), N (QnA)∩En = {0} the operator An := QnA|En
: En → Z∗

n

has an inverse. In case of exact data (δ = 0) the convergence ∥u∗ − un∥E → 0 as n → ∞ is
guaranteed, if there exists a sequence of approximations (ûn)n∈N, ûn ∈ En, satisfying the conditions

∥u∗ − ûn∥E → 0 as n→ ∞, ∥A−1
n QnA(u∗ − ûn)∥ → 0 as n→ ∞.

Under two conditions

∃τ <∞ : sup
vn∈En,vn ̸=0

∥Avn∥F
∥QnAvn∥Z∗

n

≤ τ ∀n ∈ N, ∥A−1
n+1∥dist(f,AEn) → 0 as n→ ∞

the self-regularization ∥u∗−un∥E → 0 as δ → 0 is guaranteed by choice of the dimension n(δ) from
the discrepancy principle as the first index such that ∥Aun − fδ∥F ≤ bδ, b > τ + 1.

In general, estimation of τ may be complicated. We will consider some applications on the
collocation method for Volterra integral equations of the first kind.

36



Abstracts of MMA2024, May 28 – May 31, 2024, Pärnu, Estonia
© 2024 Eesti Matemaatika Selts

TIME PERIODIC INVERSE PROBLEM WITH
NONLOCAL CONDITION
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In a bounded domain σ we consider the time periodic boundary value problem for the heat
equation:

Ut(x, t)− ν∆U(x, t) = q(t),

U(x, t)
∣∣
∂σ

= 0,

U(x, 0) = U(x, 2π),∫
σ

U(x, t) dx = F (t), F (0) = F (2π),

(1)

where U and q are the unknown functions while F is a given function, i.e. for given F we find the right
hand side q such that the solution U satisfies the additional nonlocal condition

∫
σ

U(x, t) dx = F (t).

Problem (1) can be interpreted as an inverse parabolic problem. Using the concept of a very weak
solution introduced in paper [1] for the initial boundary value problem, we prove the existence of
a unique weak solution of time periodic problem (1) under the assumption that function F has
minimal regularity, i.e function F belongs only to L2(0, 2π) (see [2]).
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PERIODIC CUBIC SPLINE HISTOPOLATION
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For a given grid of points a = x0 < x1 < . . . < xn = b and given real numbers zi, i = 1, . . . , n,
consider the problem of histopolation, i.e., the problem of finding a function S from some class of
functions such that ∫ xi

xi−1

S(x)dx = zihi, i = 1, . . . , n, (1)

where hi = xi − xi−1, i = 1, . . . , n.
It is known that cubic spline histopolation problem with classical boundary conditions and arbi-

trary placement of histopolation knots is uniquely solvable [1]. This is not true for periodic spline
histopolation. In case of periodic spline histopolation we look for a solution to the problem from
the class of mth degree polynomial splines satisfying boundary conditions

S(j)(a) = S(j)(b), j = 0, 1, . . . ,m− 1.

It is known that for m even, n arbitrary and also for m odd, n odd problem (1) has a unique solution
[2]. For m odd, n even it is known that in case of uniform grid there exist values zi, i = 1, . . . , n,
such that periodic histopolation problem does not have a solution [2; 3]. In case of non-uniform grid
the negative result is proven for m = 1, n even and m odd, n = 2 (see [2]) leaving other cases open.

We restrict ourselves to the cubic spline case m = 3, even number of subintervals n = 2k,
k = 2, 3, . . . and arbitrary placement of knots; analyse different representations of the histospline
and discuss solvability issues.
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POINTWISE-IN-TIME A-PRIORI AND A-POSTERIORI
ERROR CONTROL FOR TIME-FRACTIONAL
PARABOLIC EQUATIONS

NATALIA KOPTEVA

University of Limerick

Department of Mathematics and Statistics, University of Limerick, Ireland

E-mail: natalia.kopteva@ul.ie

An initial-boundary value problem with a Caputo time derivative of fractional order α ∈ (0, 1)
is considered, solutions of which typically exhibit a singular behaviour at an initial time. For this
problem, building on some ideas from [1], we give a simple and general numerical-stability analysis
using barrier functions, which yields sharp pointwise-in-time error bounds on quasi-graded temporal
meshes with arbitrary degree of grading. This approach is employed in the error analysis of the
L1 and Alikhanov L2-1σ fractional-derivative operators [2], as well as an L2-type discretization of
order 3 − α in time [3]. This methodology is also generalized for semilinear fractional parabolic
equations [4]. In particular, our error bounds accurately predict that milder (compared to the
optimal) grading yields optimal convergence rates in positive time. The theoretical findings are
illustrated by numerical experiments.

Furthermore, pointwise-in-time a posteriori error bounds will be given in the spatial L2 and L∞
norms. Hence, an adaptive mesh construction algorithm is applied for the L1 method, which yields
optimal convergence rates 2− α in the presence of solution singularities [5; 6; 7].
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CURVE ESTIMATION WITH MODIFIED COMPLETE
SPLINES AND EXPONENTIAL PARAMETERIZATION
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John Paul II Catholic University of Lublin2

Institute of Information Technology1
Faculty of Natural and Technical Sciences2
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We discuss the issue of fitting data points Qm = {qi}mi=0 in arbitrary Euclidean space En (see [1]).
It is also assumed, that the knots Tm = {ti}mi=0 are unknown and as such they need to be replaced
by some T̂m = {t̂i}mi=0. For Qm dense the issue of convergence rate of a given interpolation scheme
γ̂ (based on T̂m) in approximating γ (with γ(ti) = qi) has been extensively studied (as for classical
case with Tm given - see e.g. [1; 7]). A possible remedy to substitute Tm with T̂m is to apply an
exponential parameterization:

t̂0 = 0, t̂i+1 = ∥qi+1 − qi∥λ (1)

with i = 0, . . . ,m− 1 and λ ∈ [0, 1] - see [7]. The convergence issue (and its rate) of γ̂ to γ has been
tackled for (1) and γ̂ forming either piecewise Lagrange quadratics or cubics or modified Hermite
interpolants (see [2; 3; 4]). We examine here the asymptotics in γ ≈ γ̂ = γ̂MC forming a modified
complete spline based on Qm and (1) - see [5]. We establish a linear convergence rate (in terms of
δm = maxi∈{0,...,m−1}{ti+1 − ti}) in estimating γ by γ̂MC for λ ∈ [0, 1). The latter supplements
the case of λ = 1 yielding a faster quartic rate. Lastly we report on numerical tests confirming the
above asymptotics and its sharpness. Finding the knots for sparse reduced data (here m <<∞) can
be dealt by solving a relevant optimization task (see [6]).
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BLOOD FLOW MODELLING IN HUMAN HEART USING
FSI
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The goal of this talk is to present the FSI (fluid-structure interaction) CFD (computational fluid
dynamics) simulations of the blood flow in the human heart left atrial appendage for a patient-
specific geometry. These simulations are important for the medical doctors decision making for
the patients with atrial fibrillation. In order to compute blood flow velocity we use Navier-Stokes
equations coupled with Shell mechanics Uflyand-Mindlin model. The FSI CFD simulations in the
heart is a challenging problem: the existing softwares are not too robust for real life Reynolds
numbers and often do not converge to the solution of the Navier-Stokes equations for the blood
coupled with the elasticity equations of the wall. That is why we first provide the CFD computations
with the rigid wall when the codes are more stable. Using this solution as the reference velocity and
pressure, then we provide the FSI computations which become much more robust (see [1]).
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ABOUT THE NUMERICAL SOLUTION OF SINGULAR
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
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Due to various new applications in physics, chemistry, and other fields of science, the interest in
fractional derivatives and equations containing them has increased significantly over last century (see
for example [1; 3]). In [2] a class of singular fractional integro-differential equations was investigated.

We now consider singular fractional integro-differential equations of the form

(MβDβ
0u)(t) = a1(M

β1Dβ1

0 u)(t) + a0(Vφu)(t) + f(t), 0 < t ≤ T. (1)

By Cm[0, T ] (m ∈ N0) we denote the space of m times continuously differentiable functions u on
the closed interval [0, T ]; C0[0, T ] = C[0, T ], and by L1(0, 1) we denote the Banach space consisting
of real or complex valued functions φ defined on (0, 1) such that ∥φ∥L1(0,1) =

∫ 1

0
|φ(x)|dx < ∞. In

equation (1), the operator Mβ (β ∈ R) is defined as (Mβu)(t) = tβu(t) (0 < t ≤ T ) for u ∈ C[0, T ],

(Vφu) (t) =

∫ t

0

1

t
φ
(s
t

)
u(s)ds =

∫ 1

0

φ(x)u(tx)dx, 0 ≤ t ≤ T, u ∈ C[0, T ],

i.e. Vφ : C[0, T ] → C[0, T ] is a cordial Volterra integral operator with core φ ∈ L1(0, 1), and

β, β1, a0, a1 ∈ R, q < β < q + 1, β > β1 ≥ 0, f ∈ Cq[0, T ].

The fractional differential operator Dβ
0 (of the order β ∈ [0,∞)) in equation (1), is defined as the

inverse of the Riemann-Liouville integral operator Jβ : C[0, T ] → C[0, T ] on the space JβC[0, T ],
i.e. Dβ

0 v = (Jβ)−1v, where v belongs to the range JβC[0, T ] of Jβ , β ≥ 0.
We study the unique solvability of equations of the form (1) and discuss the numerical solution

of such equations.
This is a joint work with Arvet Pedas.
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APPROXIMATION BY BEURLING’S ZETA-FUNCTIONS
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The system P of real numbers 1 < p1 ⩽ p2 ⩽ · · · ⩽ · · · , pn → ∞ as n→ ∞, is called generalized
prime numbers. Using the system P, the system NP of generalized integers

m = pα1
1 · · · pαr

r , r ∈ N, αj ∈ N0 = N ∪ {0}, j = 1, . . . , r,

is constructed. Generalized prime numbers were introduced by Beurling [1], he also obtained the
first results on the asymptotic behaviour as x→ ∞ for

πP(x) =
∑

p⩽x, p∈P

1 and NP(x) =
∑

m⩽x,m∈NP

1,

and relations among them. To study πP(x), Beurling introduced zeta-functions ζP(s) defined in
some half-planes by

ζP(s) =
∏
p∈P

(
1− 1

ps

)−1

or ζP(s) =
∑

m∈NP

1

ms
.

Now, the functions ζP(s) are called Beurling zeta-functions. Various authors developed analytic
theory for the functions ζP(s). Note that each case of P requires a separate studying.

In report, we consider the approximation problem of analytic functions by shifts ζP(s + iτ) for
some classes of systems P. We assume the estimation

NP(x) = ax+O
(
xδ

)
, 0 ⩽ δ < 1, a > 0,

and suppose that there exists σ̂ < 1, such that

σ̂ = inf

{
σ :

∫ T

0

|ζP(σ + it)|2 dt≪σ T, σ > δ

}
.

Under the above hypotheses, we obtain [2] that there exists a set of analytic functions, approximated
by shifts ζP(s+ iτ). Identification of that set requires new restrictions for the system P.
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ON THE NUMERICAL SOLUTION OF THE NEUMANN
PROBLEM FOR LAPLACE’S EQUATION IN PLANAR
DOMAINS WITH CORNERS
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A new boundary integral equation (BIE) method for the numerical solution of the exterior Neu-
mann problem for the Laplace equation in planar domains with corners is proposed. Using the
single layer representation of the potential, the differential problem is reformulated in terms of a
BIE whose solution has singularities at the corners.

A “modified" Nyström type method based on a Gaussian type quadrature formula is proposed for
its approximation.

Convergence and stability results for the proposed method are proved in proper weighted spaces
of continuous functions. Moreover, the use of a smoothing transformation allows to increase the
regularity of the solution and, consequently, the order of convergence of the method.

The efficiency of the proposed method is shown by illustrating some numerical tests.
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ON CENTRAL PART INTERPOLATION
APPROXIMATIONS FOR SYSTEMS OF FRACTIONAL
DIFFERENTIAL EQUATIONS
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We consider an initial value problem for a system of fractional differential equations of the form

(Dα
Capyi)(t) +

∑n

j=1
aij(t)yj(t) = fi(t), 0 ≤ t ≤ 1, i = 1, . . . , n, n ∈ N := {1, 2, . . .}, (1)

yi(0) = y0i, y0i ∈ R := (−∞,∞), i = 1, . . . , n, (2)

where 0 < α < 1, and the functions aij , fi are continuous: aij , fj ∈ C[0, 1] for i, j = 1, . . . , n.
Here Dα

Capy is an α-order Caputo fractional derivative of a function y = y(t). Then it turns out
that problem (1)-(2) possesses a unique solution y1, . . . , yn such that yi ∈ C[0, 1], Dα

Capyi ∈ C[0, 1],
i = 1, . . . , n. However, we cannot generally expect (see [1]) that y1, . . . , yn belong to Cq[0, 1]
for aij , fi ∈ Cq[0, 1], i, j = 1, . . . , n, q ∈ N. Instead, we can show that, for i, j = 1, . . . , n, if
aij , fi ∈ Cq,µ(0, 1], q ∈ N, µ ∈ (0, 1), then yi and its derivatives Dα

Capyi belong to Cq,ν(0, 1],
where ν = max{1 − α, µ}. Here, by Cq,µ(0, 1] (q ∈ N, 0 < µ < 1) we denote the set of functions
y ∈ C[0, 1] ∩ Cq(0, 1] such that

|y(k)(t)| ≤ c t1−µ−k, 0 < t ≤ 1, k = 1, . . . , q,

where c is a positive constant independent of t.
We propose a high-order method for solving (1)-(2) based on improving the boundary behavior

of the exact solution with the help of a change of variables, and on central part interpolation by
polynomial splines on the uniform grid. The central part interpolation approach was used for solving
Fredholm integral equations of the second kind and it has shown accuracy and numerical stability
advantages compared to standard piecewise polynomial collocation methods, including collocation
at Chebyshev points [2]. We apply this approach for solving (1)-(2) and derive global error estimates
for the approximate solution analogous to [3].

This work is my joint collaboration with Arvet Pedas and Mikk Vikerpuur.
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MATHEMATICAL MODELING OF NEURAL FIELDS
WITH DIFFUSION

DANIELE AVITABILE (1), NIKOLAI CHEMETOV (2), AND PEDRO LIMA (3)

Amsterdam Centre for Dynamics and Computations, Vrije Universiteit Amsterdam(1);
DCM-FFCLRP, University of S. Paulo(2); CEMAT, Instituto Superior Tecnico, University of
Lisbon (3)

Amsterdam, Holland (1); Ribeirão Preto, Brasil (2); Lisboa, Portugal (3)

E-mail: plima@math.tecnico.ulisboa.pt

We are concerned with the analytical and numerical solution of the following integro-differential
equation

∂tv(x, ξ, t) = ν∂2ξξv(x, ξ, t)− γv(x, ξ, t)

+

∫
Ω

W (x, x′, ξ, ξ′)S(v(x′, ξ′, t))dx′dξ′ +G(x, ξ, t), (1)

for (x, ξ, t) ∈ ΩT = Ω× [0, T ], where Ω = Tn × U, U = (0, L) and Tn is the n−dimensional torus.

We search for a solution v of (1), being a periodic function on x, satisfying Neumann boundary
conditions with respect to ξ and an initial condition.

Our analysis, which is described with detail in [2], relies on perturbing weak solutions to the
diffusion-less problem (with ν = 0), that is, a standard neural field, for which weak problems have
not been studied to date. We find rigorous asymptotic estimates for the problem with and without
diffusion, and prove that the solutions of the two models stay close, in a suitable norm,on finite time
intervals. Using a computational method that is described in [1], we provide numerical evidence of
our perturbative results.
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Let Q be a positive definite quadratic n × n matrix and Q[x] = xTQx for x ∈ Zn. The Epstein
zeta-function ζ(s;Q), s = σ + it, is defined, for σ > n

2 , by the series ζ(s;Q) =
∑

x∈Zn\{0}(Q[x])−s,
and can be continued analytically to the whole complex plane, except for a simple pole at the point
s = n

2 with residue πn/2

Γ(n/2)
√
detQ

. The function ζ(s;Q) was introduced by P. Epstein in [1], its value-
distribution was investigated by various authors; for example, an extensive survey of the results for
the function ζ(s;Q) is given in [2].

In the talk, some generalized continuous and discrete results of joint works with A. Laurinčikas
on the value-distribution for ζ(s;Q) with even n ≥ 4 and integers Q[x] will be presented. More
precisely, we will show that, for a special differentiable function φ(t) with a monotonic derivative,

1

T
meas {t ∈ [0, T ] : ζ(σ + iφ(t);Q) ∈ A} , A ∈ B(C),

converges weakly to an explicitly given probability measure on (C,B(C)) as T → ∞ [3]. Here
measA denotes the Lebesgue measure of a measurable set A ⊂ R, and B(C) – the Borel σ-field of
the space C. Moreover, we will discuss that, for a certain increasing differentiable function φ(t)
with a continuous monotonic bounded derivative and with an additional condition for the sequence
{φ(k)}, on (C,B(C)), there exists an explicitly described probability measure PQ,σ such that

1

N
# {N ⩽ k ⩽ 2N : ζ(σ + iφ(k);Q) ∈ A} , A ∈ B(C),

converges weakly to PQ,σ as N → ∞ [4]. Also, a few examples of the function φ(t) will be given.
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We address the intricacies surrounding the efficacy of oncolytic viruses and the infiltration of
healthy cells to combat malignant cells. Similar models and treatment of experimental data for the
process also explored in [1].

We consider PDE systems (1) with special right hand sides modelling the different amounts of
injections: 

∂C

∂t
−D△C =

∑
γδ(x− xp) + f(x), x ∈ Ω,

D
∂C

∂n
+ βC = 0, x ∈ ∂Ω,

(1)

where δ(x) is the dirac delta function, C is the concentration, D is the diffusivity, γ is the injection
rate and xp is the injection position.

These are discretized by finite element techniques.
Consideration of simpler models for similar problems in the field such as ODE systems has been

explored in [2] and main features are discussed here as well. We present the graphical results of
the obtained fields and discuss main aspects of several underlying modelling stages. Moreover we
discuss the presence of experimental data and the identification of parameters for these models.
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Let s = σ + it be a complex variable, and 0 < λ ⩽ 1, 0 < α ⩽ 1 two parameters. The Lerch
zeta-function L(λ, α, s) is defined, for σ > 1, by the Dirichlet series

L(λ, α, s) =

∞∑
m=0

e2πiλm

(m+ α)s
,

and has a meromorphic continuation to the whole complex plane with a simple pole at the point
s = 1 when λ = 1.

In the report, we consider the approximation of analytic functions by generalized shifts L(λ, α, s+
iφ(τ)). The real-valued function φ(τ) is defined for τ ⩾ τ0 > 0, is increasing to +∞ and has a
monotonic derivative such that

φ(2τ) (min(φ′(τ), φ′(2τ))) = O(τ), τ → ∞.

We present the following results.

Theorem 1. Suppose that the set {log(m + α) : m ∈ N0} is linearly independent over the field of
rational numbers, K is a compact subset of the strip D = {s ∈ C : 1/2 < σ < 1} with connected
complement, and f(s) is a continuous on K function, and analytic in the interior of K. Then, for
every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|L(λ, α, s+ iφ(τ))− f(s)| < ε

}
> 0. (1)

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

Theorem 2. Suppose that the parameters λ and α are arbitrary. Then there exists a non-empty
closed set Fλ,α,φ ⊂ D such that, for every compact set K ⊂ D, f(s) ∈ Fλ,α,φ and ε > 0, inequality
(1) is valid, and the same assertion as in Theorem 1 with “lim” is true..

Theorems 1 and 2 generalize the results of [1] and [2] obtained for φ(τ) = τ .
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The swinging Atwood machine under consideration consists of two masses m1, m2 attached to
opposite ends of a massless inextensible thread wound round two massless frictionless pulleys of
negligible radius (see [1]). The mass m1 is allowed to swing in two dimensions and its behaves like
a spherical pendulum of variable length while the mass m2 is constrained to move only along a
vertical. Such a system has three degrees of freedom and its equations of motion may be written in
the form

rθ̈ = −g sin θ − 2ṙθ̇ +
p2φ cos θ

r3 sin3 θ
, r2 sin2 θφ̇ = pφ = const,

(2 + ε)r̈ = rθ̇2 − g(1 + ε− cos θ) +
p2φ

r3 sin2 θ
. (1)

Here the variables r, θ, φ describe geometrical configuration of the system, g is a gravity constant,
ε = (m2 −m1)/m1, and pφ is an integral of motion determined from the initial conditions.

In the case of pφ = 0 the mass m1 oscillates on a vertical plane and we obtain the swinging
Atwood machine which may demonstrate a periodic motion (see [2; 3]).

One can easily check that there exists an exact particular solution to equations (1) of the form

φ(t) =

√
g(1 + ε)

r0
t+ φ0, r(t) = r0, θ(t) = θ0 = arccos(1/(1 + ε)). (2)

Solution (2) describes a uniform motion of the mass m1 in a horizontal plane on a circular orbit of
radius r0 sin θ0. Simulation of the system motion shows that small variation of the initial conditions
results only in small perturbation of the mass m1 orbit. Analyzing the Hamiltonian function of the
system and applying the stability theory, we have proved that solution (2) is stable with respect to
the variables r, ṙ, θ, θ̇, φ̇.
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We analyze the two dimensional nonlinear parabolic equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
− f(x, y, u), (x, y) ∈ Ω = {0 < x < 1, 0 < y < 1}, t ∈ (0, T ],

with given initial condition and boundary conditions

u(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω,

u(x, 0, t) = µ1(x, t), u(x, 1, t) = µ2(x, t), u(0, y, t) = µ3(y, t)

and with nonlocal integral condition on one boundary of rectangular domain

u(1, y, t) = γ

1∫
0

1∫
0

u(x, y, t)dxdy + µ4(y, t).

We write down the finite difference method and estimate the error of the solution based on the
properties of M-matrices, and then prove the convergence of the differential scheme. The main result
of the investigation is that the majorant function is constructed and establishing the stability and
convergence of the differential scheme.
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It is shown in [1] that the model of the Hepatitis C model with the proliferation of infected and
uninfected hepatocytes [2] can be expressed in the form of two Riccati equations coupled with the
multiplicative and diffusive terms:{

dx
dt = a0 + a1x+ a2x

2 + a3xy + a4y,
dy
dt = b0 + b1y + b2y

2 + b3xy + b4x,
(1)

where ak, bk ∈ R; k = 0, 1, ..., 4. The standard form of a solitary solution reads:

x (t) = σ

∏n
k=1 (exp (η (t− t0))− xk)∏n
k=1 (exp (η (t− t0))− tk)

, (2)

where n ∈ N is the order of the solitary solution; σ, η, t0, xk, tk ∈ R.
It is a common feature of nonlinear dynamical systems that a solitary solution form a separatrix

in the space of system parameters and initial conditions [3]. Therefore, the existence of solitary
solutions may help to understand the global dynamics of the system. The necessary condition for
the existence of the order–1 solitary solutions to Eq.(1) is derived in [1]:

a3 = b2; b3 = a2. (3)

However, the limit transition from Eq.(1) to the system of Riccati equations coupled with the
diffusive terms yields a system of degenerate Riccati equations [4]. Moreover, the fact that the
Riccati system coupled with the diffusive terms admits non-deformed order-1 solitary solutions,
serves as a proof for the structural instability of the hepatitis C model with the proliferation of
infected and uninfected hepatocytes.
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We consider an operator equation

Au = f∗, f∗ ∈ R(A) ̸= R(A),

where A ∈ L(H,F ) is the linear continuous operator between real Hilbert spaces H and F . Instead
of the exact right-hand side f∗ we have only an approximation f ∈ F . To get the regularized
solution we consider the following class of regularization methods

ur = (I −A∗Agr(A
∗A)u0 + gr(A

∗A)A∗f,

where u0 is the initial approximation, r is the regularization parameter and the generating function
gr(λ) satisfies for r ≥ 0 the conditions

sup
0≤λ≤∥A∗A∥

|gr(λ)| ≤ γr, sup
0≤λ≤∥A∗A∥

λp |1− λgr(λ)| ≤ γpr
−p, 0 ≤ p ≤ p0.

Well-known heuristic rule for choosing regularization parameter is the quasioptimality principle,
where the parameter is chosen as the global minimum point of the function

ψQ(r) = r
∥∥A∗B2

r (Aur − f)
∥∥ , Br = (I −AA∗gr(AA

∗))1/2p0 ,

on the set of parameters Ω = {rj : rj = qrj−1, j = 1, 2, ...,M, q > 1}. Unfortunately, this rule is
unstable in this sense that it often fails in case of heat-type problems.
To get stable parameter choice rule we introduce modified quasioptimality criterion function ψMQ(r)
in the form:

ψMQ(r0) = ψQ(r0),

ψMQ(rj) = max{ψQ(rj), (dMD(rj)/dMD(rj−1))
2/(2+1/p0)ψMQ(rj−1)}, j > 0,

where the function dMD(r) = ∥Br(Aur − f)∥. Choosing global minimum point of the function
ψMQ(r) as regularization parameter gives us stable heuristic rule, but to get more accuracy we
present the following algorithm. Let rMQ be the global minimum point of the function ψMQ(r) on
the set of local minimum points of the function ψQ(r).
Heuristic rule. For the regularization parameter choose the parameter

rH = min{rQ,max{rMQ, rHR}},

where rQ and rHR are the global minimum points of the functions ψQ(r) and ψHR(r) = r1/2dMD(r),
respectively.
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Lighthill [1] derived a nonlinear integral equation which describes the temperature distribution of
the surface of a projectile moving through a laminar layer at high Mach numbers, which is given by

2t1/3u4(t) + Γ(2/3)
(
J2/3u′

)
(t) = 0, t > 0, (1)

u(0) = 1, (2)

where Jα, 0 < α < 1, is the Riemann-Liouville operator defined by

(Jαv) (t) =
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds, t ≥ 0.

In [2] was proved that (1)-(2) posseses a unique continuous solution, u⋆, such that

0 < u⋆(t) < 1, t > 0; u⋆(t) −→ 0 as t→ +∞,

with the following unimprovable, for large t, estimate

u⋆(t) ≤ sin(π/3)√
3

t−1/6 ∼ 0.841t−1/6.

Then, the convergence u⋆(t) −→ 0 as t→ +∞ is slow.
This work is concerned with the numerical solution of (1). Indeed we consider a numerical

method based on polynomial collocation method, with several choices for the mesh, and compare
the numerical results obtained.
Some considerations about the convergence of the proposed method are made.
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In [3], Mishou obtained a joint universality theorem for the Riemann and Hurwitz zeta-functions.
A discrete version of Mishou’s theorem was given in [2].
Let a = {am : m ∈ N} and b = {bm : m ∈ N0} be two periodic sequences of the complex numbers.
Moreover, for a fixed θ > 1

2 , vu(m) = exp
{
−
(
m
u

)θ} and vu(m,α) = exp
{
−
(
m+α
u

)θ}
, where

0 < α ≤ 1 and u > 0. Define two series ζu(s; a) =
∑∞

m=1
amvu(m)

ms and ζu(s, α; b) =
∑∞

m=0
bmvu(m,α)
(m+α)s .

Then the later series are absolutely convergent in any half-plane σ > σ0. These series are certain
convolutions with the periodic and periodic Hurwitz zeta-functions, respectively. Let, for positive
h1 and h2, L(P;α, h1, h2, π) = {(h1 log p : p ∈ P), (h2 log p : p ∈ (m+α)), 2π)}, where P is the set of
all prime numbers. In the report, we will discuss approximation of a pair of analytic functions by
shifts of the functions ζuN

(s; a) and ζuN
(s, α; b) with uN → ∞ as N → ∞. Let K be be the class of

compact sets of the strip {s ∈ C : 1
2 < σ < 1} with connected complements, and H0(K) and H(K)

with K ∈ K the classes of continuous nonvanishing and continuous functions on K, respectively,
that are analytic in the interior of K. Then the following statement is valid [1].

Theorem 1. Suppose that the sequence a is multiplicative, the set L(P;α, h1, h2, π) is linearly inde-
pendent over the field of rational numbers, and uN → ∞ and uN ≪ N2 as N → ∞. Let K1,K2 ∈ K
and f1(s) ∈ H0(K1), f2(s) ∈ H(K2). Then, for every ϵ > 0 , the limit

lim
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|ζuN
(s+ ikh1; a)− f1(s)| < ϵ1,

sup
s∈K2

|ζuN
(s+ ikh2, α; b)− f2(s)| < ϵ2

}
exists and is positive for all but at most countably many ϵ1 > 0 and ϵ2 > 0.
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A global approximation method of Nyström type is explored for the numerical solution of a class
of nonlinear integral equations of the second kind of the type:

f(y)−
∫ 1

−1

k1(x, y)f(x)dx−
∫ 1

−1

k2(x, y)h(x, f(x))dx = g(y), y ∈ [−1, 1],

Integral equations of this type have wide applications in problems involving nonlinearities such as
heat radiation, heat transfer, acoustic, elasticity, and electromagnetic problems; see [1; 2].

Some of these models are mathematically formulated in terms of boundary value problems having
nonlinear boundary conditions, which can be reformulated as the equation under consideration [3;
4] .

In applicative contexts, the kernels of the equation are smooth and/or weakly singular. Therefore
cases of smooth and weakly singular kernels are both considered. Firstly the solvability of the
equation is studied in the space of continuous functions and the smoothness of the solution is stated
according to the smoothness of the known functions. In the case of regular kernels, the proposed
numerical method uses a Gauss-Legendre rule, whereas in the second case of weakly singular kernels,
the method resorts to a product rule based on Legendre nodes. Stability and convergence are proved
in subspaces of Sobolev and Zygmund type, equipped with the uniform norm.
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ON SENSITIVE DEPENDENCE OF SOLUTIONS ON THE
INITIAL DATA IN ORDINARY DIFFERENTIAL
EQUATIONS

FELIX SADYRBAEV1,2

Institute of Mathematics and Computer Science, University of Latvia

Rainis boulevard 29, LV-1459 R̄ıga, Latvia

Daugavpils University
13 Vien̄ıbas street, Daugavpils, LV-5401, Latvia

E-mail: felix@latnet.lv

A sensitive dependence of solutions on the initial data is an indication of chaotic behavior. This
phenomenon was extensively studied for three-dimensional systems. It appears and plays an impor-
tant role in many processes of real life. Examples in biology, chemistry, financial mathematics are
well known.

In our talk several less-known examples are considered, starting from Duffing-type equations, and
including formally very simple ordinary differential equations of order three and four.

Examples are provided, and illustrative materials are supplied.
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ON THE MEAN SQUARE OF THE HURWITZ
ZETA-FUNCTION IN SHORT INTERVALS
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Let s = σ+it be a complex variable, and 0 < α ⩽ 1 a fixed parameter. The Hurwitz zeta-function
ζ(s, α) is given, for σ > 1, by Dirichlet series

ζ(s, α) =

∞∑
m=0

1

(m+ α)s
,

and has analytic continuation to the whole complex plane, except for a simple pole s = 1.
In the theory of zeta-functions, mean square estimates play an important role. For example, they

are the main ingredient in proofs of universality theorems on approximation of analytic functions. A
problem of effectivization of universality theorems requires mean square estimates in short intervals.

Our report is devoted to a mean square estimate of the function ζ(s, α) in short intervals.We will
announce the following theorem

Theorem 1. Suppose that α ̸= 1, 1/2, and 1/2 < σ < 7/12 is fixed. Let T 27/82 ⩽ H ⩽ Tσ. Then,
uniformly in H, the estimate

∫ T+H

T−H

|ζ(σ + it, α)|2 dt≪σ,α H

is valid.

Theorem 1 extends a known results for the Riemann zeta-function [1], i.e., for ζ(s, 1). Note that the
case of ζ(s, α) is different from that of ζ(s, 1) because ζ(s, α) has no Euler’s product over primes.
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Let F(z) be a cusp form of weight κ for the full modular group with the Fourier series expansion
F(z) =

∑∞
m=−∞ c(m)e2πimz. The corresponding zeta-function ζ(s,F), s = σ + it, is defined for

σ > (κ+ 1)/2, by the series

ζ(s,F) =

∞∑
m=1

c(m)

ms
,

and has analytic continuation to an entire function. We suppose additionally that F(z) is a nor-
malized Hecke-eigen cusp form. Thus, ζ(s,F) has the Euler product over prime numbers.

Our report is devoted to universality of the function ζ(s,F). Let DF = {s ∈ C : κ/2 < σ <
(κ+ 1)/2}. Then it is known [1] that the shifts ζ(s+ iτ,F), τ ∈ R, approximate any non-vanishing
analytic function defined on DF . In the report, we discuss the density of approximating shifts in
short intervals. For this, we use the following conjecture: there exists σ0 ∈ (κ/2, (κ + 1)/2) and
0 < δ < 1 such that, for σ ∈ (κ/2, σ0] and T δ ⩽ H ⩽ T , uniformly in H the estimate∫ T+H

T−H

|ζ(s+ iτ ;F)|2 dt≪σ H

is valid.
Let KF be the class of compact sets of DF with connected complements, and H0F (K), K ∈ K,

the class of continuous non-vanishing functions on K that are analytic in the interior of K.

Theorem 1. Suppose that all above conditions for the form F(z) are valid. Let K ∈ KF , f(s) ∈
H0F (K), and T δ ⩽ H ⩽ T . Then, for any ε > 0,

lim inf
T→∞

1

H
meas

{
τ ∈ [T, T +H] : sup

s∈K
|f(s)− ζ(s+ iτ ;F)| < ε

}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

Proof of Theorem 1 will appear in [2].
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MATHEMATICS OF EXTREMES IN COASTAL AND
MARINE SCIENCE

TARMO SOOMERE

Tallinn University of Technology
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E-mail: tarmo.soomere@taltech.ee

Marine-driven hazards are often created by a variety of components that have not only different
nature, temporal and spatial scales, but also exhibit radically different statistical properties of their
extremes. For example, extreme water levels are jointly created by (i) storm surges that follow an
exponential distribution, (ii) the volume of excess water in the Baltic Sea that follows a normal
distribution, and (iii) wave-generated local water level setup that often obeys an inverse Gaussian
(Wald) distribution.

The most dangerous water levels follow a generalized extreme value (GEV) or (generalized) Pareto
distribution. The properties of both extreme water levels and these distributions vary substantially
in different coastal segments of the eastern Baltic Sea, providing not only delicate information about
a variety of driving mechanisms of waves and water level but also unique opportunities for insight
into future of marine and coastal extremes.

I intend to narrate a story about how extreme water levels are born in the Baltic Sea [1], how it is
possible to separate their drivers and identify which distributions they follow [2], which important
message is provided via the simplest (trend) analysis of increasing water level maxima [3] and how
these trends coexist with the contradicting narratives of (non)stationarity, changing climate [4] and
human impacts [5]. Further on I delve deeper into the present and future of extremely high and low
water levels on the shores of Estonia, Latvia and Lithuania [6]. Finally, I intend to provide a small
selection of unexpected features of extremes of various kinds in our coastal regions [7].
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H.E.M. Meier, S. Oberbeckmann, K. Parnell, C. Pons-Seres de Brauwer, A. Poska, J. Saarinen, B. Szymczycha,
E. Undeman, A. Wörman and E. Zorita. Human impacts and their interactions in the Baltic Sea region. Earth
Systems Dynamics, 13, 1–80, 2022. doi: 10.5194/esd-13-1-2022.

[6] K. Viigand, M. Eelsalu and T. Soomere. Quantifying exposedness of the eastern Baltic Sea shores with respect to
extremely high and low water levels. Coastal Engineering, under review.

[7] T. Soomere. Climate change and coastal processes in the Baltic Sea. In: Oxford Encyclopedia of Climate Science,
online publication 2024, doi: 10.1093/acrefore/9780190228620.013.897.

60



Abstracts of MMA2024, May 28 – May 31, 2024, Pärnu, Estonia
© 2024 Eesti Matemaatika Selts

COLLOCATION BASED APPROXIMATIONS FOR
FRACTIONAL BOUNDARY VALUE PROBLEMS
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We construct a high order method for the numerical solution of fractional weakly singular integro-
differential equations in the form

(Dα
Capy)(t) + h(t)y(t)+

∫ t

0

Lκ(t, s)y(s)ds = f(t), 0 ≤ t ≤ b, 0 < b <∞, (1)

subject to the conditions

a11y(0) + a12y(b1) = γ1; a21y
′(0) + a22y(b1) = γ2. (2)

The problem is reformulated as an integral equation of the second kind with respect to z = Dα
Capy,

the Caputo fractional derivative of y of order α, with 1 < α < 2, where y is the solution of the original
problem. Using this reformulation, the regularity properties of both y and its Caputo derivative
z are studied. Based on this information a piecewise polynomial collocation method is developed
for finding an approximate solution zN of the reformulated problem. Using zN , an approximation
yN for y is constructed and a detailed convergence analysis of the proposed method is given. In
particular, the attainable order of convergence of the proposed method for appropriate values of grid
and collocation parameters is established. To illustrate the performance of our approach, results of
some numerical experiments are presented.
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DISCRETE STURM–LIOUVILLE PROBLEM FOR
TWO-DIMENSIONAL ELLIPTIC EQUATION WITH THE
MULTIPLE INTEGRAL IN NONLOCAL CONDITION
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We consider the following Sturm-Liuoville Problem (SLP) with nonlocal boundary condition
(NBC) involving multiple integral [2]:

L(u) := −∂
2u

∂x2
− ∂2u

∂y2
= λu, (x, y) ∈ Ω ⊂ R2, (1)

u(x, y) =

∫
Ω

k(x, y, ξ, η)u(ξ, η)dξdη, (x, y) ∈ ∂Ω, (2)

where Ω := Ωx × Ωy, Ωx := {x : 0 < x < a}, Ωy := {y : 0 < y < b}. We will assume that the
function k satisfies the condition

∫
Ω
|k(x, y, ξ, η)|dξdη ≤ ϱ < 1. The finite difference method for the

linear two-dimensional parabolic equation with the NBC (2) in the square domain Ω = [0, 1]2 was
studied in [1].

Let us write the Finite-Difference Scheme for SLP (1)–(2):

Lh(U) : = −δ2xU − δ2yU = λU, (xi, yj) ∈ ωh,

Uij = [Kij , U ]tr, (xi, yj) ∈ ∂ωh,

and we use two-dimensional trapezoidal rule [Kij , U ]tr where Kkl
ij = k(xi, yj , xk, yl), (xi, yj) ∈ ∂ωh,

(xk, yl) ∈ ωh for approximation of integral in BC. We suppose that maxxij∈∂ωh [|Kij |, 1]tr ≤ ρ < 1.
The main aims of our study are the investigation SLP for various cases of kernel K. The main

difficulty of this problem is that in the non-classical case we cannot use the method of separation
of variables and decompose the problem into one-dimensional problems. Numerical experiments
show that the spectrum of this problem is similar to the spectrum of corresponding one-dimensional
problems. For example, all eigenvalues are real.
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We consider a finite difference approximation to the solution of the nonlocal boundary value
problem for two-dimensional Poisson equation

−∂
2u

∂x2
− ∂2u

∂y2
= f(x, y), (x, y) ∈ Ω ⊂ R2

with nonlocal conditions including multiple integrals

u(x, 0) = γ0

∫
Ω

u(ξ, η)dξdη + g0(x), x ∈ Ωx,

u(x, Ly) = γ1

∫
Ω

u(ξ, η)dξdη + g1(x), x ∈ Ωx,

u(0, y) = g2(y), u(Lx, y) = g3(y), y ∈ Ωy,

where Ω := Ωx × Ωy, Ωx := {x : 0 < x < Lx}, Ωy := {y : 0 < y < Ly}.
We evaluate double integrals using Trapezoidal rule in two dimensions. The Laplace operator is

approximated in a standard way on a five-point stencil.
The main aim is to find the conditions for the parameters γ0 and γ1 under which unique solution

exists.
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ON SIMULATION WITH PARTICLE MOTION
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The extraction process of active components from biomass is based on filtration of the solvent
through a filter cake of biomass. We focus on the simulation of the evolution of the filter cake. The
computational domain is separated into two parts: the fluid part ΩF (t) and the filter cake part
ΩC(t) with a time dependent interface separating the two. The filter cake can grow by adhesion of
new biomass particles carried by the flow in ΩF .

As a result, one obtains a coupled system of Navier-Stokes and Darcy equations

ut + u · ∇u = ν△u−∇p+ f, ΩF ;

u = −K∇p+ f, ΩC ;

∇ · u = 0, ΩF ∪ ΩC .

On the interface Beavers-Joseph conditions are imposed [1].
The particles are assumed to be round and influenced by hydrodynamic drag force and gravity.

The particles are assumed to stick to the filter cake upon collision. As a result, the filter cake
domain grows in time.

The equations are implemented using a finite volume scheme on a voxel mesh extending a previous
solver [2]. The interface between the Darcy and Navier-Stokes domains is not resolved fully and
changes in discrete steps corresponding to the voxel size.
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A GENERAL COLLOCATION ANALYSIS FOR WEAKLY
SINGULAR VOLTERRA INTEGRAL EQUATIONS WITH
VARIABLE EXPONENT
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Piecewise polynomial collocation of weakly singular Volterra integral equations (VIEs) of the
second kind has been extensively studied in the literature, where integral kernels of the form (t −
s)−α for some constant α ∈ (0, 1) are considered. Variable-order fractional-derivative differential
equations currently attract much research interest, and in Zheng and Wang SIAM J. Numer. Anal.
2020 such a problem is transformed to a weakly singular VIE whose kernel has the above form with
variable α = α(t), then solved numerically by piecewise linear collocation, but it is unclear whether
this analysis could be extended to more general problems or to polynomials of higher degree. In
the present paper the general theory (existence, uniqueness, regularity of solutions) of variable-
exponent weakly singular VIEs is developed using novel techniques. These results then underpin an
error analysis of collocation methods where piecewise polynomials of any degree can be used. This
error analysis is also novel — it makes no use of the usual resolvent representation, which is a key
technique in the error analysis of collocation methods for VIEs in the current research literature.
Furthermore, all the above analysis for a scalar VIE can be extended to certain nonlinear VIEs
and to systems of VIEs. The sharpness of the theoretical error bounds obtained for the collocation
methods is demonstrated by numerical examples.

This is joint work with Professor Hui Liang.
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ON DERIVATIVE SAMPLING AND CONVERGENCE IN
VARIATION OF GENERALIZED SHANNON SAMPLING
SERIES
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I this presentation we consider generalized operators for approximating derivatives and also in
the case of functions with bounded variation.

We take the formula, connecting generalized sampling operators Gχ
w and sampling Kantorovich

operators Kχ
w, presented in [2] by D. Costarelli and G. Vinti in form

(Kχ
wf)(x) = (Gχ

wF )
′
(
x+

1

2w

)
(1)

and give it a more simpler form. To do that, we use generalized Kantorovich-type (or Durrmeyer)
sampling operators, we introduced in [4] and related kernels, introduced in [3]. This approach allows
us to study derivative sampling. We give estimates of order of approximation in terms of modulii
of smootness.

An overview about sampling Kantorovich operators in BV-spaces is given in [1]. We use general-
ized Kantorovich-type sampling operators in BV-spaces an give estimates of order of approximation
in terms of corresponding modulii of smootness.
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Let s = σ + it be a complex variable, and a = {am : m ∈ N} a periodic sequence of complex
numbers with minimal period q ∈ N. The periodic zeta-function ζ(s; a) is defined, for σ > 1, by the
series

ζ(s; a) =

∞∑
m=1

am
ms

,

and is meromorphically continued to the whole complex plane with a possible simple pole at the
point s = 1. In the report, we consider approximation of analytic functions by shifts ζ(s+ iφ(t); a)
with a certain function φ(t) and multiplicative sequence a.

We will discuss the following problems.
1. Approximation of analytic functions by discrete shifts ζ(s+ ihtk; a), h > 0, k ∈ N, where {tk}

is a sequence of Gram points [4].
2. Joint approximation of collections of analytic functions by shifts (ζ(s + iγ1(τ); a1), . . . , ζ(s +

iγr(τ); ar)), where γ1(τ), . . . , γr(τ) are increasing to infinity continuously differentiatiable functions
[1].

3. Joint approximation of collections of analytic functions by shifts (ζ(s + ih1γk; a1), . . . , ζ(s +
ihrγk; ar)), hj > 0, where {γk : k ∈ N} is a sequence of non-trivial zeros of the Riemann zeta-function
[2].

4. Approximation of analytic functions by shifts of compositions F (ζ(s + ih1γk; a1), . . . , ζ(s +
ihrγk; ar)), where F : Hr(D) → H(D) is a certain continuous operator, and H(D) denotes the
space of analytic functions on D = {s ∈ C : 1/2 < σ < 1} [3].

The above results form the doctoral dissertation of the author.
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TIME-FREQUENCY ANALYSIS IN EUCLIDEAN SPACES
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Time-frequency analysis can be described as Fourier analysis simultaneously both in time and
in frequency. Its origins are in quantum mechanics, in signal processing, and in pseudo-differential
operators. A time-frequency transform is a sesquilinear mapping from a family of test functions
in time to functions in the time-frequency plane. The class of time-frequency transforms is further
restricted by imposing conditions stemming from basic transformations of signals and those which an
idealized energy density could satisfy. In [1] with Vesa Vuojamo and Heikki Orelma, we characterized
time-frequency transforms in Euclidean spaces in terms of the corresponding pseudo-differential
operator quantizations and integral kernel conditions. In the talk, I will also show how to generalize
time-frequency analysis to those locally compact groups that allow a nice-enough Fourier transform:
wide families of topological groups can be treated, including all the compact groups and all the locally
compact commutative groups, and more.
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Let us investigate the Fućik problem

x′′ = −µx+ + λx−, (1)

with one classical
x(0) = 0, (2)

and other nonlocal two-point boundary condition

x(1) = γx(ξ), (3)
x(1) = γx′(ξ), (4)

here ξ = m
n ∈ (0, 1), γ ∈ R, m and n (0 < m < n) are positive coprime integer numbers.

Also we analyze the Fućik problem (1) with condition

x′(0) = 0 (5)

in the left boundary, as well as with nonlocal conditions (3) – (4) in the right boundary. The aim
of investigation is to analyze main properties of the nonlocal problem spectrum and compare them
with classical Fućik spectrum. The idea of boundary conditions was taken from the work [1], where
the Sturm-Liouville equation

x′′ = −λx

was analyzed with boundary conditions (2) - (5).
Some of the results are the logical continuation and generalization of previous authors’ investiga-

tions [2; 3; 4].
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Mathematical morphology arose from the needs of practical geology in the 1970s. However soon,
fuzzy morphology theory found important applications in other fields, particularly in image pro-
cessing, and is now widely studied and applied by many researchers. Mathematical morphology
theory within fuzzy sets was firstly introduced in the paper by De Baets et al. [1]. As in "classical"
approach, the fuzzy mathematical morphology was based on two operators - dilation D and erosion
E are induced on the linear space by a fuzzy structuring element B.

A lot of work has been done in the study of fuzzy morphological operators on Euclidean space
and many applications have been found in the study of different practical problems. Taking as a
basis a pair of operators that behave like dilation and erosion lead to various abstract, in particular,
algebraic approaches to the subject of mathematical morphology. In turn, this made it possible to
develop a categorical view of mathematical morphology, see, e.g. [2], [3], [4] et al. However, the
disadvantage of these abstract approaches is that the role of the structural element is practically
lost.

As far as we know, there was no much work done to develop "classical"(fuzzy) mathematical
morphology theory within the framework of category theory. This in turn essentially restricts the
possibility of considering relations between (fuzzy) morphological spaces, their transformations,
products and direct sums of (fuzzy) morphological spaces, etc.

The purpose of our talk is to present a category containing "classical" (fuzzy) morphological spaces
realized in the spirit of the article [1]. This provides us the flexibility to deal with transformations of
fuzzy morphological spaces, which in turn can enrich the use in practical applications. As the basis
for this category, we take structured additive groups (X,S,+X , 0X) and (Y, T,+Y , 0Y ) as objects
and certain L-fuzzy relations R : X × Y → L between them as morphisms.
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We consider a class of fractional weakly singular integro-differential equations

(Dα2

Capy)(t) + d1(t) (D
α1

Capy)(t) + d0(t)y(t) +

∫ t

0

(t− s)−κ0K0(t, s)y(s)ds

+

∫ t

0

(t− s)−κ1K1(t, s)(D
θ
Capy)(s)ds = f(t), 0 ≤ t ≤ b, (1)

subject to boundary conditions

ai y
(i)(0) + bi y

(i)(b) = γi, ai, bi, γi ∈ R, i = 0, . . . , n− 1. (2)

Here Dδ
Cap is the Caputo differential operator of order δ > 0 and n := ⌈α2⌉ is the smallest integer

greater or equal to the fractional order α2. We assume that

0 < α1 < α2 ≤ n, θ ∈ (0, α2), κ0, κ1 ∈ [0, 1)

and that the given functions d0, d1, K0,K1 and f are continuous on their respective domains.
On the basis of [1] we study the existence, uniqueness and regularity of the solution y to problem

(1)–(2) and show that under suitable conditions this problem can be reformulated as a Volterra
integral equation of the second kind with respect to the fractional derivative Dα2

Capy. We regularize
the solution of this integral equation with the use of a suitable smoothing transformation and con-
struct a numerical solution to the transformed integral equation by applying a piecewise polynomial
collocation method on a mildly graded or uniform grid. We show the convergence of the proposed
algorithm and present global superconvergence results for a class of specific collocation parameters.
Finally, we complement the theoretical results with some numerical examples.

This is a joint work with Arvet Pedas.
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A convective flow in a tall vertical annulus of radii R and 1, in a case when the walls of the
annulus are maintained at the same temperature, can be descsribed by the nonlinear boundary
value problem

T ′′ +
1− α

r
T ′ + F eT = 0, T (R) = 0 = T (1), (1)

where α is a real number, F is a positive number and R ∈ (0, 1). We study the existence of the
positive solutions T (r) of problem (1) depending on the values of the parameters α, F and R.

By using the technique described in [1] and based on the Krasnosels’kĭı-Guo fixed point theorem
of cone expansion and compression, we prove the following theorem.

Theorem 1. Suppose that α and R are real numbers and R ∈ (0, 1). There exists a positive
number F ∗ such that for every F ∈ (0; F ∗) the problem (1) has two positive solutions T and T with
∥T∥ < 1 < ∥T∥.

The results obtained allow us to formulate a number of statements about solvability of the problem
(1) depending on the values of one of the parameters α, F or R, if other two parameters are fixed.

The results of present study can be used for design of bioreactor systems.
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