Treeningvõistlus

27.10.2017

1. Leia $n \times n$ maatriksi

$$
\left(\begin{array}{rrrrr}
1 & 1 & \ldots & 1 & 0 \\
1 & 1 & \ldots & 0 & 1 \\
& \ldots & \ldots & \ldots & \\
1 & 0 & \ldots & 1 & 1 \\
0 & 1 & \ldots & 1 & 1
\end{array}\right)
$$

pöördmaatriks.
2. Polünoomi

$$
P(x)=a_{2018} x^{2018}+a_{2017} x^{2017}+\cdots+a_{1} x+a_{0}
$$

kordajad rahuldavad võrdust

$$
\frac{a_{2018}}{2019}+\frac{a_{2016}}{2017}+\cdots+\frac{a_{2}}{3}+a_{0}=0 .
$$

Tõesta, et leidub $y \in \mathbb{R}$ nii, et $|y|<2$ ja $P(y)=0$.
3. Ruutmaatriks A on nilpotentne kui leidub $k \in \mathbb{N}$ nii, et $A^{k}=0$. Olgu B ja C nilpotentsed maatriksid, kusjuures $B C=C B$ (st nad kommuteeruvad).
(a) Tõesta, et $B+C$ on nilpotentne.
(b) Kas väide kehtib alati isegi siis, kui B ja C ei kommuteeru?
4. Pideva funktsiooni $f:(0,1) \rightarrow \mathbb{R}$ korral

$$
x \frac{f^{\prime}(x)}{f(x)} \leq \frac{1+x}{1-x}
$$

iga $x \in(0,1)$ jaoks ja

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=1
$$

Tõesta, et

$$
f(x) \leq x+2 x^{2}+3 x^{3}+\ldots
$$

iga $x \in(0,1)$ jaoks.
5. Leia kõik pidevad funktsioonid $f:(-1,1) \rightarrow \mathbb{R}$ mille puhul

$$
f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)}
$$

kõikide selliste $x, y \in(-1,1)$ korral, et $x+y \in(-1,1)$.

Training competition

27.10.2017

1. Find the inverse of the $n \times n$ matrix

$$
\left(\begin{array}{rrrrr}
1 & 1 & \ldots & 1 & 0 \\
1 & 1 & \ldots & 0 & 1 \\
& \ldots & \ldots & \ldots & \\
1 & 0 & \ldots & 1 & 1 \\
0 & 1 & \ldots & 1 & 1
\end{array}\right)
$$

2. The coefficients of the polynomial

$$
P(x)=a_{2018} x^{2018}+a_{2017} x^{2017}+\cdots+a_{1} x+a_{0}
$$

satisfy

$$
\frac{a_{2018}}{2019}+\frac{a_{2016}}{2017}+\cdots+\frac{a_{2}}{3}+a_{0}=0
$$

Prove that $P(y)=0$ for some $y \in \mathbb{R}$ with $|y|<2$.
3. An $n \times n$ matrix A is called nilpotent if there exists $k \in \mathbb{N}$ such that $A^{k}=0$. Let B and C be nilpotent matrices such that $B C=C B$ (i.e., they commute).
(a) Prove that $B+C$ is nilpotent.
(b) Does the claim always hold even if B and C do not commute?
4. Let a continuous function $f:(0,1) \rightarrow \mathbb{R}$ satisfy

$$
x \frac{f^{\prime}(x)}{f(x)} \leq \frac{1+x}{1-x}
$$

for all $x \in(0,1)$ and

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=1
$$

Prove that

$$
f(x) \leq x+2 x^{2}+3 x^{3}+\ldots
$$

for all $x \in(0,1)$.
5. Find all continuous functions $f:(-1,1) \rightarrow \mathbb{R}$ such that

$$
f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)}
$$

for all $x, y \in(-1,1)$ with $x+y \in(-1,1)$.

1. Note that $S=A-J$, where S is the given matrix, A is the matrix of 1 's, and J is the matrix of 0 's with 1's on the perpendicular diagonal. Clearly, $A^{2}=n A, J^{2}=I$, and $J A=A J=A$. If $M=\left(m_{i j}\right)$ is the inverse of S, then $M A-M J=I$. Let m_{i} denote $\sum_{j} m_{i j}$. For the first row, this gives

$$
m_{1}-m_{1 k}=0, \quad k \neq n
$$

and

$$
m_{1}-m_{1 n}=1,
$$

so

$$
m_{1}=\sum_{j} m_{1 j}=(n-1) m_{1}+m_{1}-1
$$

and $m_{1}=1 /(n-1)$. Hence,

$$
M=\frac{1}{n-1} A-J .
$$

Indeed,

$$
\left(\frac{1}{n-1} A-J\right)(A-J)=\frac{1}{n-1} A^{2}-J A-\frac{1}{n-1} A J+J^{2}=\left(\frac{n}{n-1}-1-\frac{1}{n-1}\right) A+I=I .
$$

2. Note that

$$
\int_{-1}^{1} P(x) d x=2\left(\frac{a_{2018}}{2019}+\frac{a_{2016}}{2017}+\cdots+\frac{a_{2}}{3}+a_{0}\right)=0 .
$$

So either $P(x) \equiv 0$ or $P(x)$ changes its sign in the interval $(-1,1)$ and by continuity of P there is a point y in $(-1,1)$ such that $P(y)=0$.
3. (a) Let the nilpotency indeces of B and C be b and c, respectively. Since our matrices commute, we get

$$
(B+C)^{m}=\sum_{i=0}^{m}\binom{i}{m} B^{i} C^{m-i} .
$$

Choosing m so that in any summand $i \geq b$ or $m-i \geq c$ (e.g., $m=b+c$ is enough), we get that $(B+C)^{m}=0$.
(b) Take

$$
B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad C=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

4. We have

$$
\frac{f^{\prime}(x)}{f(x)}-\frac{1}{x} \leq \frac{2}{1-x}
$$

so that

$$
\int_{0}^{x}\left(\frac{f^{\prime}(x)}{f(x)}-\frac{1}{x}\right) d x \leq \int_{0}^{x} \frac{2}{1-x} d x
$$

i.e.,

$$
\ln \frac{f(x)}{x} \leq \ln \frac{1}{(1-x)^{2}}
$$

Hence,

$$
\frac{f(x)}{x} \leq \frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}
$$

as needed.
5. Clearly, $f(0)=0$. Let $u(x)=\arctan (f(x))$. Then $u(x)$ is continuous and the equation becomes

$$
\tan (u(x+y))=\tan (u(x)+u(y)) .
$$

So $u(x+y)=u(x)+u(y)+k(x, y) \pi$ with $k(x, y) \in \mathbb{Z}$. But the continuity of u implies that k is continuous and hence constant. So $k \equiv 0$ because $u(0)=0$.
So we get that $u(x)+u(y)=u(x+y)$ for all $x, y, x+y \in(-1,1)$. This is the Cauchy equation with additional constraints $x, y, x+y \in(-1,1)$. The solution stays the same though, $u(x)=a x$ for suitable $a \in \mathbb{R}$. Hence the answer is $f(x)=\tan (a x)$, where $|a| \leq \pi / 2$ to keep f continuous.
How to solve Cauchy equation: first note that $u(n x)=n u(x)$ for all $n \in \mathbb{N}, x, n x \in(-1,1)$. Now $u(x / n)=u(x) / n$ for all $n \in \mathbb{N}, x \in(-1,1)$. Then $u((m / n) x)=m u(x / n)=(m / n) u(x)$ forall $m, n \in \mathbb{N}$, $x \in(-1,1)$. Also, clearly $u(-x)=-u(x)$ for all $x \in(-1,1)$. Hence $u(q x)=q u(x)$ for all $q \in \mathbb{Q}$, $x, q x \in(-1,1)$. Take $r \in \mathbb{R}$ such that $x, r x \in(-1,1)$. There exists a sequence $\left(q_{n}\right) \subset \mathbb{Q}$ such that $q_{n} \rightarrow r$ and $\left|q_{n}\right| \leq r$. By continuity of u, one has $q_{n} u(x)=u\left(q_{n} x\right) \rightarrow u(r x)$. On the other hand, $q_{n} u(x) \rightarrow r u(x)$. So $u(r x)=r u(x)$ for all $r \in \mathbb{R}, x, r x \in(-1,1)$. Denoting $a:=u\left(x_{0}\right) / x_{0}$ for some $x_{0} \in(-1,1)$, we get that $u(x)=u\left(x_{0} \cdot x / x_{0}\right)=\left(x / x_{0}\right) u\left(x_{0}\right)=a x$ for all $x \in(-1,1)$.
(from https://artofproblemsolving.com/community/c6h386060)

