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1. Olgu A = (aij) mittenegatiivsete elementidega n× n maatriks, kusjuures
n∑

j=1

aij = 1

kõikide i = 1, . . . , n korral. Olgu λ maatriksi A mingi omaväärtus. Tõesta, et |λ| ≤ 1.

2. Olgu f : R→ [−1, 1] kaks korda pidevalt diferentseeruv, kusjuures

f(0)2 + (f ′(0))2 = 4.

Tõesta, et leidub x0 ∈ R, mille korral

f(x0) + f ′′(x0) = 0.

3. Nimetame paari (X, ∗) auguga rühmoidiks, kui X ⊂ N on hulk, ∗ : X×X → X∪{0} (võib mõelda, et ∗
on tehe hulgalX, mille mõned väärtused on defineerimata), a0∗b0 = 0 täpselt ühe paari (a0, b0) ∈ X×X
korral ning leidub c ∈ X nii, et a ∗ b = c kõikide teiste paaride (a, b) ∈ X × X korral (mis erinevad
paarist (a0, b0)). Teiste sõnadega vastava Cayley tabeli elemendid on kõik samad v.a. üks, mis on
“defineerimata”.
Ütleme, et kaks auguga rühmoidi (X1, ∗1) ja (X2, ∗2) on isomorfsed, kui leidub bijektiivne kujutus
T : X1 ∪ {0} → X2 ∪ {0} nii, et T (0) = 0 ja T (x ∗1 y) = T (x) ∗2 T (y) kõikide x, y ∈ X1 korral.
Olgu n ≥ 2. Kui palju leidub paarikaupa mitteisomorfseid auguga rühmoide (X, ∗), mille hulgas X on
n elementi?

4. Tõesta, et leidub parajasti üks funktsioon y : [0,∞)→ R, mis rahuldab

y(x)3 + xy(x) = 8

kõikide x ≥ 0 korral ning arvuta ∫ 7

0

y(x)2dx.

5. Leia kõik arvud n, mille korral leidub reaalarvuline n× n maatriks A nii, et

A2 + 2A+ 5I = 0.

6. (a) Olgu f : [0,∞) → R monotoonne funktsioon, kusjuures päratu integraal
∫ ∞
0

f(x)dx koondub.

Tõesta, et

lim
h→0+

h

∞∑
n=1

f(nh) =

∫ ∞
0

f(x)dx.

(b) Arvuta

lim
t→1−

(1− t)
∞∑

n=1

tn

1 + tn
.



1. Let A = (aij) be a real n× n matrix with non-negative entries such that

n∑
j=1

aij = 1

for all i = 1, . . . , n. Prove that no eigenvalue of A has absolute value greater than 1.

2. Suppose that f : R→ [−1, 1] is two times continuously differentiable and that

f(0)2 + (f ′(0))2 = 4.

Prove that there exists x0 ∈ R such that

f(x0) + f ′′(x0) = 0.

3. Let us call a pair (X, ∗) a punctured magma if X ⊂ N is a set, ∗ : X ×X → X ∪{0} (you may think of
∗ as an operation on X with some values undefined), a0 ∗ b0 = 0 for exactly one pair (a0, b0) ∈ X ×X,
and there exists c ∈ X such that a ∗ b = c for all other pairs (a, b) ∈ X × X not equal to (a0, b0).
In other words, all elements of a corresponding Cayley table are the same except for one, which is
“undefined”.

Let us call two punctured magmas (X1, ∗1) and (X2, ∗2) isomorphic if there exists a bijection T :
X1 ∪ {0} → X2 ∪ {0} such that T (0) = 0 and T (x ∗1 y) = T (x) ∗2 T (y) for all x, y ∈ X1.

Let n ≥ 2. How many mutually non-isomorphic punctured magmas (X, ∗) with X having n elements
are there?

4. Prove that there exists a unique function y : [0,∞)→ R such that

y(x)3 + xy(x) = 8

for all x ≥ 0 and calculate ∫ 7

0

y(x)2dx.

5. Find all natural numbers n for which there exists a real n× n matrix such that

A2 + 2A+ 5I = 0.

6. (a) Let f : [0,∞)→ R be a monotone function such that
∫ ∞
0

f(x)dx converges. Prove that

lim
h→0+

h

∞∑
n=1

f(nh) =

∫ ∞
0

f(x)dx.

(b) Calculate

lim
t→1−

(1− t)
∞∑

n=1

tn

1 + tn
.



Solutions

1. Take an eigenvector x 6= 0 corresponding to the eigenvalue λ. Let x = (xj)
n
j=1 and let xi be such that

|xi| = max
1≤j≤n

|xj |. Then xi 6= 0. Since λx = Ax, we have

|λ| · |xi| = |λxi| =

∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

n∑
j=1

aij

∣∣∣∣∣∣ · max
1≤j≤n

|xj | = 1 · |xi|

and the claim follows.

2. Let us denote
F (x) := f(x)2 + (f ′(x))2.

Then F is continuously differentiable and F ′ = 2f ′(f + f ′′). So it is enough to find a local extremum
point x for F such that f ′(x) 6= 0. If we take a closed interval [a, b], then F must attain its maximum
there. If 0 ∈ [a, b] and F (a), F (b) ≤ F (0) = 4, then F must attain maximum at the interior point
x of [a, b], so it must be a local maximum. Note that then f ′(x) cannot be 0 because otherwise
F (x) = f(x)2 ≤ 1 < 4.
To find a suitable [a, b], let us apply the Lagrange mean value theorem to f on intervals [0, 2] and
[−2, 0]. We obtain b ∈ [0, 2] such that

|f ′(b)| = |f(2)− f(0)|
2

≤ |f(2)|+ |f(0)|
2

≤ 1 + 1

2
= 1.

Similarly we get a ∈ [−2, 0] such that |f ′(a)| ≤ 1. Then

F (a) = f(a)2 + (f ′(a))2 ≤ 12 + 12 = 2 < 4

and F (b) < 4, as needed.

3. Let n ≥ 3. There are only 5 possible cases:

(a) For some a ∈ X we have a ∗ a = 0, and b ∗ c = a for all (b, c) different from (a, a).
(b) For some a ∈ X we have a ∗ a = 0, and there exists b 6= a such that c ∗ d = b for all (c, d) different

from (a, a).
(c) For different a, b ∈ X we have a ∗ b = 0, and c ∗ d = a for all (c, d) different from (a, b).
(d) For different a, b ∈ X we have a ∗ b = 0, and c ∗ d = b for all (c, d) different from (a, b).
(e) For different a, b ∈ X we have a ∗ b = 0, and there exists e different from both a and b such that

c ∗ d = e for all (c, d) different from (a, b).

We claim that magmas belong to the same case if and only if they are isomorphic. (By the way, let
us point out that being isomorphic is clearly an equivalence relation.) Clearly, magmas X1 and X2

belonging to the same case are isomorphic (take any bijection connecting elements denoted by the same
letters).
A magma from (a-b) cannot be isomorphic to a magma from (c-e) because T (a) ∗T (a) = 0 means that
there would be an element x in the latter magma such that x ∗ x = 0, which is a contradiction.
In a (b) magma there are two different elements x, y such that x ∗ x = x and y ∗ y = y but in an (a)
magma there is only one, so they are not isomorphic.
An isomorphism between (c-e) magmas must map elements denoted by a, b to the corresponding ele-
ments. So a (c) magma (with a ∗a = a) is not isomorphic to a (d-e) magma (with a ∗a 6= a). Similarly
a (d) magma is not isomorphic to an (e) magma. This completes the argument.
If n = 2, then the case (e) is not possible. Otherwise, the solution is the same. So in this case, the
answer is 4.
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4. Given a fixed x ≥ 0 a function ϕ(y) = y3+xy is strictly increasing. So since ϕ(0) = 0 and ϕ(y)→y→∞
∞, there is a unique solution y(x) to the equation y3 + xy = 8 and y(x) > 0. Since ϕ′(y) > 0, the
implicit function theorem yields that y(x) is continuously differentiable. Now note that

3y2y′ + y + xy′ = 0,

so that
y′ =

−y
3y2 + x

< 0.

Thus y(x) is strictly decreasing and therefore has an inverse function x(y). Since y(0) = 2 and y(7) = 1,
we can change the variable in the integral∫ 7

0

y(x)2dx =

∫ 1

2

y2x′(y)dy =

∫ 1

2

y2

y′(x)
dy = −

∫ 2

1

(
3y2 + x

y

)
y2dy =

∫ 2

1

(3y2 + xy)dy.

Since xy = 8− y2, we have ∫ 7

0

y(x)2dx =

∫ 2

1

(8 + 2y3)dy = 16− 1/2.

5. Answer: all even natural numbers.

Solution 1. Let A satisfy the equation. Note that any eigenvalue λ of A must also satisfy the same
equation λ2 + 2λ + 5 = 0, so λ = −1 ± 2i. The characteristic polynomial |A − λI| = anλ

n + · · · + a0
of A is a polynomial of power n with real coefficients. Its roots are exactly the eigenvalues of A.
If there are k eigenvalues equal to −1 + 2i and n − k eigenvalues equal to −1 − 2i, then an−1 =
−k(−1 + 2i)− (n− k)(−1− 2i). So an−1 is real if and only if k = n− k. Hence, n = 2k.

Conversely, a calculation shows that the 2× 2 real matrix

A0 =

(
0 −5
1 −2

)
is a root of this polynomial. Therefore, any 2n × 2n block diagonal matrix which has n copies of A0

on the diagonal will satisfy this equation as well.

Solution 2.(Janno) Our condition is equivalent to (A+ I)2 = −4I. Taking determinant we see that the
LHS is always nonnegative but the RHS is so only if n is even. If n is even, take

A =



−1 0 0 · · · · · · · · · 0 2
0 −1 0 · · · · · · · · · 2 0
...

...
. . . · · · · · · . .

. ...
...

0 · · · 0 −1 2 0 · · · 0
0 · · · 0 −2 −1 0 · · · 0
...

... . .
.
· · · · · ·

. . .
...

...
0 −2 0 · · · · · · · · · −1 0
−2 0 0 · · · · · · · · · 0 −1


.

6. (a) By the convergence of the integral, lim
x→∞

f(x) = 0, so f(x) must keep the same sign. Assume, e.g.,
that f is non-negative and non-increasing. Then∫ (m+1)h

h

f(x)dx ≤ h(f(h) + f(2h) + · · ·+ f(mh)) ≤
∫ mh

0

f(x)dx,

4



so that ∫ ∞
h

f(x)dx ≤ h
∞∑

n=1

f(nh) ≤
∫ ∞
0

f(x)dx,

and the claim follows. The other case is done in the same way.

(b) Put

f(x) =
e−x

1 + e−x

and e−h = t in (a).
Then the limit in question is equal to∫ ∞

0

e−x

1 + e−x
dx =

∫ 1

0

dy

1 + y
= ln 2.
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