
Tartu Ülikooli üliõpilaste matemaatikaolümpiaad

1. Funktsioon f ∈ C2[0, 1] (kaks korda pidevalt diferentseeruv lõigus [0, 1]) rahuldab tingimusi:

(a) f(0) = f ′(0) = 1,

(b) f ′′(x) ≥ 0 iga x ∈ (0, 1) korral,

(c)
∫ 1

0

f(x)dx =
3

2
.

Leia kõik sellised funktsioonid f .

2. Olgu x1, x2, . . . , xn nullist erinevad elemendid vektorruumis ja olgu A selline lineaarne teisendus, et

Ax1 = x1

ja
Axk = xk + xk−1, k = 2, 3, . . . , n.

Tõesta, et elemendid x1, . . . , xn on lineaarselt sõltumatud.

3. Olgu P (x) = ax2 + bx + c, kus a, b, c ∈ R. Seejuures 0 ≤ P (−1) ≤ 1, 0 ≤ P (0) ≤ 1 ja 0 ≤ P (1) ≤ 1.
Tõesta, et P (x) ≤ 9/8 iga x ∈ [0, 1] korral.

4. Tasandil on antud n punkti. Tõesta, et kehtib üks järgmistest võimalustest:

• kas kõik need punktid asetsevad ühel ja samal sirgel,

• või leidub sirge, mis läbib täpselt 2 punkti.

5. Olgu antud 2013× 2013 ruutmaatriksid A ja B, kusjuures AB = 0. Tõesta, et vähemalt üks maatrik-
sidest A+AT ja B +BT on singulaarne.

6. Tähistame

M := {x ∈ R : rida
∞∑

n=0

sin(n!πx) koondub}.

Tõesta, et

(a) M on kõikjal tihe, s.t. suvalise lõigu ja hulga M ühisosa ei ole tühi, (5 punkti)

(b) e ∈M , (15 punkti)

(c) hulga M sees ei leidu ühtegi lõiku. (20 punkti)



1. Find all functions f ∈ C2[0, 1] (two times continuously differentiable on the interval [0, 1]) such that:

(a) f(0) = f ′(0) = 1,

(b) f ′′(x) ≥ 0 for all x ∈ (0, 1),

(c)
∫ 1

0

f(x)dx =
3

2
.

2. Let x1, x2, . . . , xn be nonzero elements in a vector space and let A be a linear transformation such that

Ax1 = x1

and
Axk = xk + xk−1, k = 2, 3, . . . , n.

Prove that elements x1, . . . , xn are linearly independent.

3. Let P (x) = ax2 + bx + c, where a, b, c ∈ R, satisfy 0 ≤ P (−1) ≤ 1, 0 ≤ P (0) ≤ 1, and 0 ≤ P (1) ≤ 1.
Prove that P (x) ≤ 9/8 for all x ∈ [0, 1].

4. Take n points on a plane. Prove that one of the following conditions holds:

• all of these points lie on the same line,

• there exists a line with exactly two of these points.

5. Let A and B be 2013×2013 square matrices such that AB = 0. Prove that at least one of the matrices
A+AT and B +BT is not invertible.

6. Denote

M := {x ∈ R : the series
∞∑

n=0

sin(n!πx) converges}.

Prove that

(a) M is dense, i.e., the intersection of any interval and M is not empty, (5 points)

(b) e ∈M , (15 points)

(c) M does not contain any interval. (20 points)

2



2 Solutions

1. By (b) we know that f ′(x) ≥ f ′(0) = 1 for all x ∈ [0, 1]. Then f(x)− f(0) =
∫ x

0

f ′(y)dy ≥
∫ x

0

dy = x,

so that f(x) ≥ 1 + x. Now f(x)− 1− x is a continuous function on [0, 1] such that∫ 1

0

|f(x)− 1− x|dx =

∫ 1

0

f(x)dx−
∫ 1

0

(1 + x)dx =
3

2
− 3

2
= 0.

Hence, |f(x)− 1− x| = 0 for all x ∈ [0, 1]. That is, f(x) = x+ 1.

2. Let us prove it by induction. The case n = 1 is obvious. Assume the claim is true for n − 1. If
x1, . . . , xn were linearly dependent, then c1x1 + · · · + cnxn = 0 for some non-zero vector (c1, . . . , cn).
Then c1Ax1 + · · · + cnAxn = 0. Substracting the former equation from the latter, and noting that
Ax1 − x1 = 0 and Axk − xk = xk−1 for k ≥ 1, we get c2x1 + · · · + cnxn−1 = 0. By assumption,
c2 = c3 = · · · = cn = 0, so that c1x1 = 0. But x1 6= 0 and c1 = 0 contradicts the choice of c1.

3. Put Q(x) := P (x)− 1/2. Then |Q(−1)|, |Q(0)|, |Q(1)| ≤ 1/2. The Lagrange polynomial for {−1, 0, 1}
must coincide with Q(x), so

Q(x) =
x(x− 1)

2
Q(−1) + (1− x2)Q(0) +

x(x+ 1)

2
Q(1).

Now for x ∈ [−1, 1] we have

Q(x) ≤ 1

2
max

x∈[−1,1]

(∣∣∣∣x(x− 1)

2

∣∣∣∣+ ∣∣1− x2∣∣+ ∣∣∣∣x(x+ 1)

2

∣∣∣∣) =
1

2
· 5
4
=

5

8
.

Then P (x) =
1

2
+Q(x) ≤ 9

8
for all x ∈ [−1, 1].

4. The case n ≤ 2 is obvious. Let n ≥ 3 and assume that for every two points there is a third one on the
same line. Choose a pair consisting of a line defined by two points A and B (which must also have
a third point C) and of a point D outside this line such that the distance from D to the line is the
least possible (among all the pairs). Let H be a point on this line (which is not necessarily one of the
n points) such that DH ⊥ AB. Of A, B, C at least two points are on the same side with respect to
H. Without loss of generality we can assume that B is between A and H. Now the distance from B
to the line AD is less than |DH|, which contradicts the choice of our pair. Therefore, there is no such
pair and all the points lie on the same line.

5. Lemma 1. If A and B are matrices of the same size, then rank(A+B) ≤ rankA+ rankB.
Lemma 2. If A and B are square matrices of order n, then rankA+ rankB ≤ rank(AB) + n.
By Lemma 2,

rankA+ rankB ≤ rank(AB) + 2013 = 2013.

Hence, one of the numbers rankA, rankB is not greater than b2013/2c = 1006. Let us assume that
rankA ≤ 1006, then rankAT = rankA ≤ 1006. By Lemma 1,

rank(A+AT ) ≤ rankA+ rankAT ≤ 2012 < 2013.

6. (a) In any interval there is a rational point p/q, q > 0. If n ≥ q then n!x = p(q − 1)(q + 1) . . . n is an
integer, so that sin(n!πx) = 0. Hence, the series

∞∑
n=0

sin(n!πx)

converges.
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(b) The Taylor expansion of et at t = 1 yields

n!e =

∞∑
k=0

n!

k!
=

n−2∑
k=0

n!

k!
+ (n+ 1) +

1

n+ 1
+

∞∑
k=n+2

n!

k!

for n ≥ 2. Note that
n−2∑
k=0

n!

k!
= n(n− 1)

n−2∑
k=0

(n− 2)!

k!

is an even number and
∞∑

k=n+2

n!

k!
=

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · · ≤

∞∑
m=0

1

(n+ 1)(n+ 2)(n+ 3)m

=
n+ 3

(n+ 1)(n+ 2)2
= O

(
1

n2

)
.

Note that | sinx− sin y| ≤ |x− y|, so that sin(x+ y) = sinx+ z, where |z| ≤ |y|. Therefore,

sin(n!πe) = sin

(
π

n−2∑
k=0

n!

k!
+ π(n+ 1) +

π

n+ 1
+ π

∞∑
k=n+2

n!

k!

)
= sin

(
π(n+ 1) +

π

n+ 1
+ π

∞∑
k=n+2

n!

k!

)

= sin

(
π(n+ 1) +

π

n+ 1

)
+ θn = (−1)n+1 sin(

π

n+ 1
) + θn,

where |θn| ≤ π
∞∑

k=n+2

n!

k!
= O

(
1

n2

)
. Now the series

∞∑
n=2

(−1)n+1 sin(
π

n+ 1
)

converges by the alternating series test and the series

∞∑
n=2

θn

converges absolutely. Hence, the series

∞∑
n=0

sin(n!πe) = 2 sinπe+

∞∑
n=2

(−1)n+1 sin(
π

n+ 1
) +

∞∑
n=2

θn

converges as well.

(c) Let us prove that any interval [a, b], a < b, contains a point x 6∈ M . Take a natural number n1
such that 2/n1! < b− a. Then there exists an integer m1 such that

a ≤ m1

n1!
<

(m1 + 1)

n1!
≤ b.

Put

a1 :=
(m1 +

1
3 )

n1!
, b1 :=

(m1 +
2
3 )

n1!
.
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Note that [a1, b1] ⊂ [a, b] and for any x ∈ [a1, b1] one has

|sinn1!πx| ≥ sin
π

3
=

√
3

2
.

Let us now take n2 > n1 and m2 such that 2/n2! < b1 − a1 and

a1 ≤
m2

n2!
<

(m2 + 1)

n2!
≤ b1.

Denoting

a2 :=
(m2 +

1
3 )

n2!
, b2 :=

(m2 +
2
3 )

n2!
.

we get [a2, b2] ⊂ [a1, b1] and |sinn2!πx| ≥ sin
π

3
=

√
3

2
for any x ∈ [a2, b2].

If we continue in this way, we obtain a system of nested intervals

[a, b] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ . . .

and an increasing sequence of natural numbers n1 < n2 < . . . such that |sinnk!πx| ≥ sin
π

3
=

√
3

2
for all x ∈ [ak, bk].

Taking x ∈
∞⋂
k=1

[ak, bk] we get |sinnk!πx| ≥ sin
π

3
=

√
3

2
for k = 1, 2, . . . . Thus the series

∞∑
n=0

sin(n!πx)

diverges and x 6∈M .

5


