Tartu Ülikooli üliõpilaste matemaatikaolümpiaad

1. Funktsioon $f \in C^{2}[0,1]$ (kaks korda pidevalt diferentseeruv lõigus $[0,1]$) rahuldab tingimusi:
(a) $f(0)=f^{\prime}(0)=1$,
(b) $f^{\prime \prime}(x) \geq 0$ iga $x \in(0,1)$ korral,
(c) $\int_{0}^{1} f(x) d x=\frac{3}{2}$.

Leia kõik sellised funktsioonid f.
2. Olgu $x_{1}, x_{2}, \ldots, x_{n}$ nullist erinevad elemendid vektorruumis ja olgu A selline lineaarne teisendus, et

$$
A x_{1}=x_{1}
$$

ja

$$
A x_{k}=x_{k}+x_{k-1}, k=2,3, \ldots, n
$$

Tõesta, et elemendid x_{1}, \ldots, x_{n} on lineaarselt sõltumatud.
3. Olgu $P(x)=a x^{2}+b x+c$, kus $a, b, c \in \mathbb{R}$. Seejuures $0 \leq P(-1) \leq 1,0 \leq P(0) \leq 1$ ja $0 \leq P(1) \leq 1$. Tõesta, et $P(x) \leq 9 / 8$ iga $x \in[0,1]$ korral.
4. Tasandil on antud n punkti. Tõesta, et kehtib üks järgmistest võimalustest:

- kas kõik need punktid asetsevad ühel ja samal sirgel,
- või leidub sirge, mis läbib täpselt 2 punkti.

5. Olgu antud 2013×2013 ruutmaatriksid A ja B, kusjuures $A B=0$. Tõesta, et vähemalt üks maatriksidest $A+A^{T}$ ja $B+B^{T}$ on singulaarne.
6. Tähistame

$$
M:=\left\{x \in \mathbb{R}: \text { rida } \sum_{n=0}^{\infty} \sin (n!\pi x) \text { koondub }\right\}
$$

Tõesta, et
(a) M on kõikjal tihe, s.t. suvalise lõigu ja hulga M ühisosa ei ole tühi, (5 punkti)
(b) $e \in M$, (15 punkti)
(c) hulga M sees ei leidu ühtegi lõiku. (20 punkti)

1. Find all functions $f \in C^{2}[0,1]$ (two times continuously differentiable on the interval $[0,1]$) such that:
(a) $f(0)=f^{\prime}(0)=1$,
(b) $f^{\prime \prime}(x) \geq 0$ for all $x \in(0,1)$,
(c) $\int_{0}^{1} f(x) d x=\frac{3}{2}$.
2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be nonzero elements in a vector space and let A be a linear transformation such that

$$
A x_{1}=x_{1}
$$

and

$$
A x_{k}=x_{k}+x_{k-1}, k=2,3, \ldots, n
$$

Prove that elements x_{1}, \ldots, x_{n} are linearly independent.
3. Let $P(x)=a x^{2}+b x+c$, where $a, b, c \in \mathbb{R}$, satisfy $0 \leq P(-1) \leq 1,0 \leq P(0) \leq 1$, and $0 \leq P(1) \leq 1$. Prove that $P(x) \leq 9 / 8$ for all $x \in[0,1]$.
4. Take n points on a plane. Prove that one of the following conditions holds:

- all of these points lie on the same line,
- there exists a line with exactly two of these points.

5. Let A and B be 2013×2013 square matrices such that $A B=0$. Prove that at least one of the matrices $A+A^{T}$ and $B+B^{T}$ is not invertible.
6. Denote

$$
M:=\left\{x \in \mathbb{R}: \text { the series } \sum_{n=0}^{\infty} \sin (n!\pi x) \text { converges }\right\} .
$$

Prove that
(a) M is dense, i.e., the intersection of any interval and M is not empty, (5 points)
(b) $e \in M$, (15 points)
(c) M does not contain any interval. (20 points)

2 Solutions

1. By (b) we know that $f^{\prime}(x) \geq f^{\prime}(0)=1$ for all $x \in[0,1]$. Then $f(x)-f(0)=\int_{0}^{x} f^{\prime}(y) d y \geq \int_{0}^{x} d y=x$, so that $f(x) \geq 1+x$. Now $f(x)-1-x$ is a continuous function on $[0,1]$ such that

$$
\int_{0}^{1}|f(x)-1-x| d x=\int_{0}^{1} f(x) d x-\int_{0}^{1}(1+x) d x=\frac{3}{2}-\frac{3}{2}=0 .
$$

Hence, $|f(x)-1-x|=0$ for all $x \in[0,1]$. That is, $f(x)=x+1$.
2. Let us prove it by induction. The case $n=1$ is obvious. Assume the claim is true for $n-1$. If x_{1}, \ldots, x_{n} were linearly dependent, then $c_{1} x_{1}+\cdots+c_{n} x_{n}=0$ for some non-zero vector $\left(c_{1}, \ldots, c_{n}\right)$. Then $c_{1} A x_{1}+\cdots+c_{n} A x_{n}=0$. Substracting the former equation from the latter, and noting that $A x_{1}-x_{1}=0$ and $A x_{k}-x_{k}=x_{k-1}$ for $k \geq 1$, we get $c_{2} x_{1}+\cdots+c_{n} x_{n-1}=0$. By assumption, $c_{2}=c_{3}=\cdots=c_{n}=0$, so that $c_{1} x_{1}=0$. But $x_{1} \neq 0$ and $c_{1}=0$ contradicts the choice of c_{1}.
3. Put $Q(x):=P(x)-1 / 2$. Then $|Q(-1)|,|Q(0)|,|Q(1)| \leq 1 / 2$. The Lagrange polynomial for $\{-1,0,1\}$ must coincide with $Q(x)$, so

$$
Q(x)=\frac{x(x-1)}{2} Q(-1)+\left(1-x^{2}\right) Q(0)+\frac{x(x+1)}{2} Q(1) .
$$

Now for $x \in[-1,1]$ we have

$$
Q(x) \leq \frac{1}{2} \max _{x \in[-1,1]}\left(\left|\frac{x(x-1)}{2}\right|+\left|1-x^{2}\right|+\left|\frac{x(x+1)}{2}\right|\right)=\frac{1}{2} \cdot \frac{5}{4}=\frac{5}{8} .
$$

Then $P(x)=\frac{1}{2}+Q(x) \leq \frac{9}{8}$ for all $x \in[-1,1]$.
4. The case $n \leq 2$ is obvious. Let $n \geq 3$ and assume that for every two points there is a third one on the same line. Choose a pair consisting of a line defined by two points A and B (which must also have a third point C) and of a point D outside this line such that the distance from D to the line is the least possible (among all the pairs). Let H be a point on this line (which is not necessarily one of the n points) such that $D H \perp A B$. Of A, B, C at least two points are on the same side with respect to H. Without loss of generality we can assume that B is between A and H. Now the distance from B to the line $A D$ is less than $|D H|$, which contradicts the choice of our pair. Therefore, there is no such pair and all the points lie on the same line.
5. Lemma 1. If A and B are matrices of the same size, $\operatorname{then} \operatorname{rank}(A+B) \leq \operatorname{rank} A+\operatorname{rank} B$.

Lemma 2. If A and B are square matrices of order n, then $\operatorname{rank} A+\operatorname{rank} B \leq \operatorname{rank}(A B)+n$.
By Lemma 2,

$$
\operatorname{rank} A+\operatorname{rank} B \leq \operatorname{rank}(A B)+2013=2013
$$

Hence, one of the numbers rank $A, \operatorname{rank} B$ is not greater than $\lfloor 2013 / 2\rfloor=1006$. Let us assume that $\operatorname{rank} A \leq 1006$, then $\operatorname{rank} A^{T}=\operatorname{rank} A \leq 1006$. By Lemma 1 ,

$$
\operatorname{rank}\left(A+A^{T}\right) \leq \operatorname{rank} A+\operatorname{rank} A^{T} \leq 2012<2013
$$

6. (a) In any interval there is a rational point $p / q, q>0$. If $n \geq q$ then $n!x=p(q-1)(q+1) \ldots n$ is an integer, so that $\sin (n!\pi x)=0$. Hence, the series

$$
\sum_{n=0}^{\infty} \sin (n!\pi x)
$$

converges.
(b) The Taylor expansion of e^{t} at $t=1$ yields

$$
n!e=\sum_{k=0}^{\infty} \frac{n!}{k!}=\sum_{k=0}^{n-2} \frac{n!}{k!}+(n+1)+\frac{1}{n+1}+\sum_{k=n+2}^{\infty} \frac{n!}{k!}
$$

for $n \geq 2$. Note that

$$
\sum_{k=0}^{n-2} \frac{n!}{k!}=n(n-1) \sum_{k=0}^{n-2} \frac{(n-2)!}{k!}
$$

is an even number and

$$
\begin{aligned}
\sum_{k=n+2}^{\infty} \frac{n!}{k!}=\frac{1}{(n+1)(n+2)} & +\frac{1}{(n+1)(n+2)(n+3)}+\cdots \leq \sum_{m=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)^{m}} \\
& =\frac{n+3}{(n+1)(n+2)^{2}}=O\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

Note that $|\sin x-\sin y| \leq|x-y|$, so that $\sin (x+y)=\sin x+z$, where $|z| \leq|y|$. Therefore,

$$
\begin{gathered}
\sin (n!\pi e)=\sin \left(\pi \sum_{k=0}^{n-2} \frac{n!}{k!}+\pi(n+1)+\frac{\pi}{n+1}+\pi \sum_{k=n+2}^{\infty} \frac{n!}{k!}\right)=\sin \left(\pi(n+1)+\frac{\pi}{n+1}+\pi \sum_{k=n+2}^{\infty} \frac{n!}{k!}\right) \\
=\sin \left(\pi(n+1)+\frac{\pi}{n+1}\right)+\theta_{n}=(-1)^{n+1} \sin \left(\frac{\pi}{n+1}\right)+\theta_{n}
\end{gathered}
$$

where $\left|\theta_{n}\right| \leq \pi \sum_{k=n+2}^{\infty} \frac{n!}{k!}=O\left(\frac{1}{n^{2}}\right)$. Now the series

$$
\sum_{n=2}^{\infty}(-1)^{n+1} \sin \left(\frac{\pi}{n+1}\right)
$$

converges by the alternating series test and the series

$$
\sum_{n=2}^{\infty} \theta_{n}
$$

converges absolutely. Hence, the series

$$
\sum_{n=0}^{\infty} \sin (n!\pi e)=2 \sin \pi e+\sum_{n=2}^{\infty}(-1)^{n+1} \sin \left(\frac{\pi}{n+1}\right)+\sum_{n=2}^{\infty} \theta_{n}
$$

converges as well.
(c) Let us prove that any interval $[a, b], a<b$, contains a point $x \notin M$. Take a natural number n_{1} such that $2 / n_{1}!<b-a$. Then there exists an integer m_{1} such that

$$
a \leq \frac{m_{1}}{n_{1}!}<\frac{\left(m_{1}+1\right)}{n_{1}!} \leq b .
$$

Put

$$
a_{1}:=\frac{\left(m_{1}+\frac{1}{3}\right)}{n_{1}!}, \quad b_{1}:=\frac{\left(m_{1}+\frac{2}{3}\right)}{n_{1}!} .
$$

Note that $\left[a_{1}, b_{1}\right] \subset[a, b]$ and for any $x \in\left[a_{1}, b_{1}\right]$ one has

$$
\left|\sin n_{1}!\pi x\right| \geq \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}
$$

Let us now take $n_{2}>n_{1}$ and m_{2} such that $2 / n_{2}!<b_{1}-a_{1}$ and

$$
a_{1} \leq \frac{m_{2}}{n_{2}!}<\frac{\left(m_{2}+1\right)}{n_{2}!} \leq b_{1} .
$$

Denoting

$$
a_{2}:=\frac{\left(m_{2}+\frac{1}{3}\right)}{n_{2}!}, \quad b_{2}:=\frac{\left(m_{2}+\frac{2}{3}\right)}{n_{2}!} .
$$

we get $\left[a_{2}, b_{2}\right] \subset\left[a_{1}, b_{1}\right]$ and $\left|\sin n_{2}!\pi x\right| \geq \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$ for any $x \in\left[a_{2}, b_{2}\right]$. If we continue in this way, we obtain a system of nested intervals

$$
[a, b] \supset\left[a_{1}, b_{1}\right] \supset\left[a_{2}, b_{2}\right] \supset \ldots
$$

and an increasing sequence of natural numbers $n_{1}<n_{2}<\ldots$ such that $\left|\sin n_{k}!\pi x\right| \geq \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$ for all $x \in\left[a_{k}, b_{k}\right]$.
Taking $x \in \bigcap_{k=1}^{\infty}\left[a_{k}, b_{k}\right]$ we get $\left|\sin n_{k}!\pi x\right| \geq \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$ for $k=1,2, \ldots$. Thus the series

$$
\sum_{n=0}^{\infty} \sin (n!\pi x)
$$

diverges and $x \notin M$.

