Tartu Ülikooli üliõpilaste matemaatikaolümpiaad

25.05.2018

1. Olgu $f: \mathbb{R} \rightarrow \mathbb{R}$ integreeruv ja $0<f(z)<\frac{1}{2 z}$ iga $z>0$ korral. Tõesta, et funktsioon

$$
g(x):=\int_{0}^{x} z^{2} f(z) d z-\left(\int_{0}^{x} z f(z) d z\right)^{2}
$$

on kasvav vahemikus $(0, \infty)$.
2. Iga arvrida, mille elemendid on paarikaupa erinevad hulga $S \subset \mathbb{R}$ elemendid, on koonduv. Tõesta, et S on ülimalt loenduv.
3. Olgu $n \in \mathbb{N}$. Maatriksi $A \in \operatorname{Mat}_{n}(\mathbb{R})$ peadiagonaalil on ainult nullid ning kõik teised elemendid on kas 1 või 2018. Tõesta, et maatriksi A astak on kas n või $n-1$.
4. Vaatleme vektorruume \mathbb{R}^{2}, \mathbb{R}^{3} ja c_{00} üle \mathbb{R}, kus

$$
c_{00}=\left\{x=\left(x_{n}\right): \mathbb{N} \rightarrow \mathbb{R} \mid \exists N \in \mathbb{N} \forall n \geq N x_{n}=0\right\}
$$

Ruumides $\mathbb{R}^{2}, \mathbb{R}^{3}$ olgu normiks harilik eukleidiline norm:

$$
\left\|\left(x_{1}, x_{2}\right)\right\|=\sqrt{x_{1}^{2}+x_{2}^{2}}, \quad\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}
$$

Ruum c_{00} olgu varustatud järgmise normiga:

$$
\|x\|=\left(\sum_{n \in \mathbb{N}}\left|x_{n}\right|^{2}\right)^{1 / 2}
$$

Iga nimetatud ruumi korral leia vähim võimalik kinniste kerade arv, mis katavad terve ühiksfääri $\{x:\|x\|=1\}$, kuid ükski kera ei sisalda nullpunkti, või tõesta, et lõplikust arvust keradest ei piisa. See tähendab, leia vähim $m \in \mathbb{N}$, mille korral leiduvad elemendid x^{1}, \ldots, x^{m} ja raadiused $r_{i} \in\left(0,\left\|x^{m}\right\|\right)$, $i=1, \ldots, m$ nii, et iga elemendi $y,\|y\|=1$, korral leidub indeks $i \in\{1, \ldots, m\}$ omadusega $\left\|y-x^{i}\right\| \leq r_{i}$.
5. Olgu $n \in \mathbb{N}$ ja $c>0$. Polünoomi P kõik n nullkohta on erinevad reaalarvud. Tõesta, et hulk

$$
\left\{x \in \mathbb{R}: P(x) \neq 0, \frac{P^{\prime}(x)}{P(x)}>c\right\}
$$

on lõpliku arvu vahemike ühend, kusjuures nende vahemike pikkuste summa võrdub $\frac{n}{c}$.
6. Olgu n-tipulise $(n \in \mathbb{N})$ täisgraafi K_{n} iga serv värvitud ühte kolmest värvist. Tõesta, et sellel graafil leidub sidus alamgraaf, mille kõik servad on sama värvi ja mille tippude arv on vähemalt $n / 2$.

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be integrable and such that $0<f(z)<\frac{1}{2 z}$ for all $z>0$. Prove that the function

$$
g(x):=\int_{0}^{x} z^{2} f(z) d z-\left(\int_{0}^{x} z f(z) d z\right)^{2}
$$

is increasing on $(0, \infty)$.
2. Every series composed of distinct elements from a set $S \subset \mathbb{R}$ is convergent. Prove that S is at most countable.
3. Let $n \in \mathbb{N}$. Consider matrix A of size $n \times n$ such that there are only zeroes on the main diagonal and all the other elements are either 1 or 2018 . Prove that the rank of A is either n or $n-1$.
4. Consider the vector spaces $\mathbb{R}^{2}, \mathbb{R}^{3}$, and

$$
c_{00}=\left\{x=\left(x_{n}\right): \mathbb{N} \rightarrow \mathbb{R} \mid \exists N \in \mathbb{N} \forall n \geq N x_{n}=0\right\}
$$

Let the spaces $\mathbb{R}^{2}, \mathbb{R}^{3}$ be equipped with the usual Euclidean distance:

$$
\left\|\left(x_{1}, x_{2}\right)\right\|=\sqrt{x_{1}^{2}+x_{2}^{2}}, \quad\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}
$$

Let c_{00} be equipped with the norm

$$
\|x\|=\left(\sum_{n \in \mathbb{N}}\left|x_{n}\right|^{2}\right)^{1 / 2}
$$

For all these spaces find the minimal finite number of closed balls not containing the origin such that their union contains the unit sphere $\{x:\|x\|=1\}$ or prove that it takes infinite number of balls to cover the unit sphere in this way. That is, find a minimal $m \in \mathbb{N}$ for which there exist elements x^{1}, \ldots, x^{m} and radii $r_{i} \in\left(0,\left\|x^{m}\right\|\right), i=1, \ldots, m$, such that for every element y satisfying $\|y\|=1$ there exists an index $i \in\{1, \ldots, m\}$ with $\left\|y-x^{i}\right\| \leq r_{i}$.
5. Let $n \in \mathbb{N}$ and let $c>0$. All the n roots of a polynomial P are distinct real numbers. Prove that the set

$$
\left\{x \in \mathbb{R}: P(x) \neq 0, \frac{P^{\prime}(x)}{P(x)}>c\right\}
$$

is a union of a finite number of intervals such that the sum of lengths of these intervals equals $\frac{n}{c}$.
6 . Let $n \in \mathbb{N}$. In a complete graph with n vertices K_{n} every edge is colored with one of three colors. Prove that in this graph there exists a connected subgraph with edges of the same color and at least $n / 2$ vertices.

Solutions

1. Note that

$$
g^{\prime}(x)=x^{2} f(x)-2 x f(x) \int_{0}^{x} z f(z) d z>x^{2} f(x)-x f(x) \int_{0}^{x} d z=0 .
$$

2. Consider sets

$$
S_{n}^{+}=\left\{x \in S \left\lvert\, x>\frac{1}{n}\right.\right\}
$$

and

$$
S_{n}^{-}=\left\{x \in S \left\lvert\, x<-\frac{1}{n}\right.\right\} .
$$

If any of them is infinite we can construct a divergent series from distinct elements of it. So each of them is finite and

$$
\{0\} \cup \bigcup_{n \in \mathbb{N}}\left(S_{n}^{+} \cup S_{n}^{-}\right)
$$

is countable. But the latter set clearly contains S.
3. Let $B=\left(b_{i j}\right)$ with $b_{i j}=1$ for all i, j. Note that $A-B$ modulo 2017 is a diagonal matrix with -1 on the diagonal. So $|A-B|$ is not 0 modulo 2017 and $\operatorname{rank}(A-B)=n$. Note that rank of a linear transformation L on \mathbb{R}^{n} is just the dimension of the image $L\left(\mathbb{R}^{n}\right)$. Since $(A-B)\left(\mathbb{R}^{n}\right) \subset A\left(\mathbb{R}^{n}\right)+B\left(\mathbb{R}^{n}\right)$, we have $n=\operatorname{rank}(A-B) \leq \operatorname{rank} A+\operatorname{rank} B=\operatorname{rank} A+1$.
4. In \mathbb{R}^{n} the minimal number is $n+1$. We cannot cover with n balls because any ball leaves a diametral section of the ball intact and by induction you cannot cover it by $n-1$. The base ($n=1$) is clear. On the other hand, note that for any half-space $H=H(y, \alpha)=\left\{x \in \mathbb{R}^{n} \mid\langle x, y\rangle \geq \alpha\right\}$ defined by $y \in \mathbb{R}^{n}$ and $\alpha>0$ not containing the origin you can find a large enough ball B not containing the origin such that $S \cap H \subset S \cap B$ (S denotes the sphere). Now you can clearly cover the sphere by halfspaces $H\left(e^{i}, \alpha_{i}\right), i=1, \ldots, n$ and $H\left(-\left(e^{1}+\cdots+e^{n}\right), \alpha\right)$ for small enough α_{i} and α (an element e^{i} is defined by $e_{k}^{i}=\delta_{i k}$, i.e., 1 when $i=k$ and 0 otherwise).
In c_{00}, you cannot cover by a finite number of balls. Take x^{1}, \ldots, x^{m}. We can find $n \in \mathbb{N}$ such that $x_{n}^{i}=0$ for $i=1, \ldots, m$. Then for any i,

$$
\left\|x^{i}-e^{n}\right\|=\sqrt{\left\|x^{i}\right\|^{2}+1}>\left\|x^{i}\right\| .
$$

So $e^{n} \in S$ is not in any ball with center x^{i} that does not contain the origin.
5. Take the roots $\left\{x_{1}, \ldots, x_{n}\right\}$ in increasing order. The function

$$
f(x)=\frac{P^{\prime}(x)}{P(x)}=\frac{1}{x-x_{1}}+\cdots+\frac{1}{x-x_{n}}
$$

is decreasing on intervals $\left(-\infty, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right),\left(x_{n}, \infty\right)$ from ∞ to $-\infty$ or 0 , because

$$
f^{\prime}(x)=-\left(\frac{1}{\left(x-x_{1}\right)^{2}}+\cdots+\frac{1}{\left(x-x_{n}\right)^{2}}\right)<0 .
$$

Note that $f(x)<0$ on $\left(-\infty, x_{1}\right)$. The set in question is a union of n intervals $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ with $y_{k} \in\left(x_{k}, x_{k+1}\right)$ for $k=1, \ldots, n-1, y_{n} \in\left(x_{n}, \infty\right)$, and $f\left(y_{1}\right)=\cdots=f\left(y_{n}\right)=c$.
Note that y_{1}, \ldots, y_{n} are n distinct roots of the polynomial $c P-P^{\prime}$. Let $P=a_{n} x^{n}+\ldots a_{1} x+a_{0}$. A Vieta's formula now gives

$$
\begin{gathered}
x_{1}+\cdots+x_{n}=-\frac{a_{n-1}}{a_{n}} \\
y_{1}+\cdots+y_{n}=\frac{n a_{n}-c a_{n-1}}{c a_{n}}=\frac{n}{c}-\frac{a_{n-1}}{a_{n}} .
\end{gathered}
$$

6. Let A be the set of vertices of the original graph. Find the largest connected single-coloured subgraph G_{1} with its set of vertices A_{1} and assume that $\left|A_{1}\right|<n / 2$. Take any $x \in A_{1}$ and $y \notin A_{1}$. The edge $x y$ is not of the same colour as G_{1} by the maximality of G_{1}. Let G_{2} denote the largest connected single-coloured subgraph containing $x y$ and let A_{2} be its set of vertices. Note that

- $x \in A_{1} \cap A_{2} \neq \emptyset$,
- $y \in A_{2} \backslash A_{1} \neq \emptyset$,
- $A_{1} \backslash A_{2} \neq \emptyset$, because otherwise $\left|A_{1}\right|<\left|A_{2}\right|$ contradicts the maximality of G_{1},
- $A \backslash\left(A_{1} \cup A_{2}\right) \neq \emptyset$, because $\left|A_{1} \cup A_{2}\right|<2 \cdot n / 2=n$.

Any edge between $A_{2} \backslash A_{1}$ and $A_{1} \backslash A_{2}$ must be of the third color (by the maximality of G_{1} and G_{2}). These edges form a connected subgraph with the set of vertices $A_{1} \triangle A_{2}:=\left(A_{2} \backslash A_{1}\right) \cup\left(A_{1} \backslash A_{2}\right)$. The same is true for edges between $A_{1} \cap A_{2}$ and $A \backslash\left(A_{1} \cup A_{2}\right)$. These form a connected subgraph with the set of vertices $A \backslash\left(A_{1} \triangle A_{2}\right)$. One of $A \backslash\left(A_{1} \triangle A_{2}\right)$ and $A_{1} \triangle A_{2}$ must have at least $n / 2$ vertices.

