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1. Olgu f : R→ R integreeruv ja 0 < f(z) < 1
2z iga z > 0 korral. Tõesta, et funktsioon

g(x) :=

∫ x

0

z2f(z)dz −
(∫ x

0

zf(z)dz

)2

on kasvav vahemikus (0,∞).

2. Iga arvrida, mille elemendid on paarikaupa erinevad hulga S ⊂ R elemendid, on koonduv. Tõesta, et
S on ülimalt loenduv.

3. Olgu n ∈ N. Maatriksi A ∈ Matn(R) peadiagonaalil on ainult nullid ning kõik teised elemendid on kas
1 või 2018. Tõesta, et maatriksi A astak on kas n või n− 1.

4. Vaatleme vektorruume R2, R3 ja c00 üle R, kus

c00 = {x = (xn) : N→ R | ∃N ∈ N ∀n ≥ N xn = 0}.

Ruumides R2, R3 olgu normiks harilik eukleidiline norm:

‖(x1, x2)‖ =
√
x21 + x22, ‖(x1, x2, x3)‖ =

√
x21 + x22 + x23.

Ruum c00 olgu varustatud järgmise normiga:

‖x‖ =

(∑
n∈N
|xn|2

)1/2

.

Iga nimetatud ruumi korral leia vähim võimalik kinniste kerade arv, mis katavad terve ühiksfääri
{x : ‖x‖ = 1}, kuid ükski kera ei sisalda nullpunkti, või tõesta, et lõplikust arvust keradest ei piisa. See
tähendab, leia vähim m ∈ N, mille korral leiduvad elemendid x1, . . . , xm ja raadiused ri ∈ (0, ‖xm‖),
i = 1, . . . ,m nii, et iga elemendi y, ‖y‖ = 1, korral leidub indeks i ∈ {1, . . . ,m} omadusega ‖y−xi‖ ≤ ri.

5. Olgu n ∈ N ja c > 0. Polünoomi P kõik n nullkohta on erinevad reaalarvud. Tõesta, et hulk

{x ∈ R : P (x) 6= 0,
P ′(x)

P (x)
> c}

on lõpliku arvu vahemike ühend, kusjuures nende vahemike pikkuste summa võrdub n
c .

6. Olgu n-tipulise (n ∈ N) täisgraafi Kn iga serv värvitud ühte kolmest värvist. Tõesta, et sellel graafil
leidub sidus alamgraaf, mille kõik servad on sama värvi ja mille tippude arv on vähemalt n/2.



1. Let f : R→ R be integrable and such that 0 < f(z) < 1
2z for all z > 0. Prove that the function

g(x) :=

∫ x

0

z2f(z)dz −
(∫ x

0

zf(z)dz

)2

is increasing on (0,∞).

2. Every series composed of distinct elements from a set S ⊂ R is convergent. Prove that S is at most
countable.

3. Let n ∈ N. Consider matrix A of size n× n such that there are only zeroes on the main diagonal and
all the other elements are either 1 or 2018. Prove that the rank of A is either n or n− 1.

4. Consider the vector spaces R2, R3, and

c00 = {x = (xn) : N→ R | ∃N ∈ N ∀n ≥ N xn = 0}

Let the spaces R2, R3 be equipped with the usual Euclidean distance:

‖(x1, x2)‖ =
√
x21 + x22, ‖(x1, x2, x3)‖ =

√
x21 + x22 + x23.

Let c00 be equipped with the norm

‖x‖ =

(∑
n∈N
|xn|2

)1/2

.

For all these spaces find the minimal finite number of closed balls not containing the origin such that
their union contains the unit sphere {x : ‖x‖ = 1} or prove that it takes infinite number of balls to cover
the unit sphere in this way. That is, find a minimal m ∈ N for which there exist elements x1, . . . , xm
and radii ri ∈ (0, ‖xm‖), i = 1, . . . ,m, such that for every element y satisfying ‖y‖ = 1 there exists an
index i ∈ {1, . . . ,m} with ‖y − xi‖ ≤ ri.

5. Let n ∈ N and let c > 0. All the n roots of a polynomial P are distinct real numbers. Prove that the
set

{x ∈ R : P (x) 6= 0,
P ′(x)

P (x)
> c}

is a union of a finite number of intervals such that the sum of lengths of these intervals equals n
c .

6. Let n ∈ N. In a complete graph with n vertices Kn every edge is colored with one of three colors.
Prove that in this graph there exists a connected subgraph with edges of the same color and at least
n/2 vertices.



Solutions

1. Note that
g′(x) = x2f(x)− 2xf(x)

∫ x

0

zf(z)dz > x2f(x)− xf(x)
∫ x

0

dz = 0.

2. Consider sets
S+
n = {x ∈ S | x > 1

n
}

and
S−n = {x ∈ S | x < − 1

n
}.

If any of them is infinite we can construct a divergent series from distinct elements of it. So each of
them is finite and

{0} ∪
⋃
n∈N

(S+
n ∪ S−n )

is countable. But the latter set clearly contains S.

3. Let B = (bij) with bij = 1 for all i, j. Note that A − B modulo 2017 is a diagonal matrix with −1
on the diagonal. So |A − B| is not 0 modulo 2017 and rank(A − B) = n. Note that rank of a linear
transformation L on Rn is just the dimension of the image L(Rn). Since (A−B)(Rn) ⊂ A(Rn)+B(Rn),
we have n = rank(A−B) ≤ rankA+ rankB = rankA+ 1.

4. In Rn the minimal number is n+ 1. We cannot cover with n balls because any ball leaves a diametral
section of the ball intact and by induction you cannot cover it by n − 1. The base (n = 1) is clear.
On the other hand, note that for any half-space H = H(y, α) = {x ∈ Rn | 〈x, y〉 ≥ α} defined by
y ∈ Rn and α > 0 not containing the origin you can find a large enough ball B not containing the
origin such that S ∩ H ⊂ S ∩ B (S denotes the sphere). Now you can clearly cover the sphere by
halfspaces H(ei, αi), i = 1, . . . , n and H(−(e1 + · · ·+ en), α) for small enough αi and α (an element ei
is defined by eik = δik, i.e., 1 when i = k and 0 otherwise).

In c00, you cannot cover by a finite number of balls. Take x1, . . . , xm. We can find n ∈ N such that
xin = 0 for i = 1, . . . ,m. Then for any i,

‖xi − en‖ =
√
‖xi‖2 + 1 > ‖xi‖.

So en ∈ S is not in any ball with center xi that does not contain the origin.

5. Take the roots {x1, . . . , xn} in increasing order. The function

f(x) =
P ′(x)

P (x)
=

1

x− x1
+ · · ·+ 1

x− xn

is decreasing on intervals (−∞, x1), (x1, x2), . . . , (xn−1, xn), (xn,∞) from ∞ to −∞ or 0, because

f ′(x) = −
(

1

(x− x1)2
+ · · ·+ 1

(x− xn)2

)
< 0.

Note that f(x) < 0 on (−∞, x1). The set in question is a union of n intervals (x1, y1), . . . , (xn, yn)
with yk ∈ (xk, xk+1) for k = 1, . . . , n− 1, yn ∈ (xn,∞), and f(y1) = · · · = f(yn) = c.

Note that y1, . . . , yn are n distinct roots of the polynomial cP − P ′. Let P = anx
n + . . . a1x + a0. A

Vieta’s formula now gives
x1 + · · ·+ xn = −an−1

an
,

y1 + · · ·+ yn =
nan − can−1

can
=
n

c
− an−1

an
.
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6. Let A be the set of vertices of the original graph. Find the largest connected single-coloured subgraph
G1 with its set of vertices A1 and assume that |A1| < n/2. Take any x ∈ A1 and y 6∈ A1. The edge
xy is not of the same colour as G1 by the maximality of G1. Let G2 denote the largest connected
single-coloured subgraph containing xy and let A2 be its set of vertices. Note that

• x ∈ A1 ∩A2 6= ∅,
• y ∈ A2 \A1 6= ∅,
• A1 \A2 6= ∅, because otherwise |A1| < |A2| contradicts the maximality of G1,

• A \ (A1 ∪A2) 6= ∅, because |A1 ∪A2| < 2 · n/2 = n.

Any edge between A2 \A1 and A1 \A2 must be of the third color (by the maximality of G1 and G2).
These edges form a connected subgraph with the set of vertices A14A2 := (A2 \A1)∪ (A1 \A2). The
same is true for edges between A1 ∩A2 and A \ (A1 ∪A2). These form a connected subgraph with the
set of vertices A \ (A14A2). One of A \ (A14A2) and A14A2 must have at least n/2 vertices.
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