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2) Olgu P(x) trigonomeetriline poliinoom astmega n, s.t.
P(z) = >"p_, agsin(kx + ¢). Toesta vorratus
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3) Olgu P poliinoom, kusjuures deg P < 2n ja |P(k)| < 1iga k € Z N [—n,n]
korral. TGesta, et iga x € [—n,n| korral |P(z)| < 2.

4) Tahistagu M, koikide kompleksete n x n-maatriksite hulka. Olgu A € M,
regulaarne. Néiita, et jirgmised tingimused on samavaarsed:

(a) A ja —A on sarnased.
(b) Leiduvad maatriksid B, C € M, nii, et A= B+ C ja B>+ C? = (.
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6) Olgu F : R? — R pidev funktsioon, kusjuures koikide u, v, w korral

5) Toesta vorratus

F(u,0) =u, F(u,u) =0, F(F(u,w), F(v,w)) = F(u,v).
Toesta, et leidub rangelt monotoonne funktsioon f : R — R nii, et

fle—y)=F(f(z), f(y))
koikide x,y € R korral.



Solutions
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1) Since the function “—— with argument ¢ is nonnegative and decreasing, we
can conclude (as in the proof of integral test for convergence) that
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This implies that
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and observe that the latter two integrals have finite limits when ¢ — 0+.
Therefore
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2) Observe that
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3) According to Lagrange formula we have
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Since |P(k)| <1 for k € [-n,n] NZ we get
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For every = € [—n,n| the inequality
Tl —il < (2n)
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holds. Indeed, in the case x > k one gets
[Ilz-il= (Hp;—u) <H|x—z|> (n—k)!((n—k=+1)...2n) = (2n)!.
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The case x < k is done similarly. Hence
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as needed.

0 A,
are square matrices similar to —A;, — Ay, respectively, and condition (2) is
satisfied for Aq, Ay, then it is clearly satisfied for A. We may assume that
A is in Jordan normal form. The condition (1) means that for any k € N,
a € C the number of Jordan cells of size k corresponding to eigenvalues «

and —a is the same. A is non-degenerate, so A does not contain nilpotent
aF +.J 0 )

4) (1) = (2). If A is a block matrix of the form < A0 ), where Ay, Ay

Jordan cells. Thus we reduce to the case A = (

0 —aFk +J
Here a € C\ {0}, E is the identity matrix, J is the nilpotent Jordan cell of
the same size m = 5. One obviously can choose a basis u1, ..., Up, V1, ..., Un

of C?” such that

Au; = auituiq, Avy = avitviq, i = 1,m — 1, Auy, = Qiy,, Avy, = —auy,.
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Put x; = u; + v;, y; = u; — v;. One immediately obtains

Az, = ayi+xip1, Ay = o + Y, 1 = 1,m — 1, Az, = ay, Ay = axp,.

Let us define B, C' € M, by the following equations
Bx; = Az;, By; =0, Cx; =0, Cy; = Ay;, for odd 1,
Bzx; =0, By; = Ay;, Cx; = Ax;, Cy; = 0, for even 1.

It is checked directly that A = B+ C and B? = C? = 0.

(2) = (1). Put V. =C", V} = im(B), Vo = im(C). There is a linear map
¢:Vi®d Vo=V, (v1,v3) — v + vg. The image of ¢ clearly contains im(A)
and, since A is non-degenerate, coincides with V. From the other hand,
im(B) C ker(B), and so dimV; < dim %. Analogously, dim V5 < dim ¥.
We conclude, that V' = Vi @ V5. It follows directly from the construction
that B(V;) =0, C(V3) =0, B(V3) =V, C(V;) = V;. Denote by I the linear
transformation of V' such that I|y, = id, I|y, = —id. One checks directly
that IB= —B, B = B, IC' = C, CI = —C. Thus [AI"! = —A.

Given integral can be viewed as the length of a curve defined by the function
F(z) = [zIn(1 + x)dz on interval [0,1]. After computing

F(z) = /xln(l +z)dx = i(Q(xz —1n(x+1) — (x — 2)x)

notice that F is monotone, F'(0) = 0 and F(1) = 7. Hence, the length of the
curve defined by F is not less than the distance between (0,0) and (1, %),

which is ,/4%—1—12:,/%.

Define a function p(z) = F(0,x). It is obviously continuous. We have

NI

@(@(x)) = F(O,F(O,LL')) = F(F(Qﬁ,ﬁlf),F(O,]J)) = F(QE, 0) = (1)

for all x € R, hence ¢ is bijective. Therefore ¢ is strictly monotone. Also
check that p(F(z,y)) = F(y, x).

Consider equation y = F(t,z) and try to find solutions to it. It is easy to
observe that

y=F(tx) =t =Fye) = z=F(ey) o) (2)

Now for every y € R consider functions FY(x) = F(y,z) and

F,(x) = F(z,y). Using (2) it is easy to check that these functions
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are bijective. Hence, strictly monotone.

Assume ¢ is increasing. Then it is easy to check that ¢(xr) = =z,
which means F(z,y) = F(y,xz) and F, = FY. Take 2y > y, > 0.
Then Fy,(0) = yo > 0 = Fy,(y), which means F,, is decreas-
ing. Hence F(zo,y0) = Fy(zo) < 0. Likewise F,, is decreasing and
F(zo,y0) = Fuy(yo) > Fuy(x9) = 0, which is a contradiction.

Thus ¢ is decreasing. Note that ¢(0) = 0. Now as F,(y) = 0 > ¢(y) = F,(0)
iff y > 0 we see that the functions F}, (y € R) are increasing. Similarly the
functions F¥ (y € R) are decreasing.

If function f satisfying
flx—y) = F(f(x), f(y)), (3)
exists then due to (2) we get

f(@) = F(f(z —y), o(f()))

and particularly
fQ2z) = F(f(z),0(f(2))).

More generally, for arbitrary constant n € N holds

f(nx) = F(f(x), o(f((n —1)x))).

This gives us an idea to define "multiplying” functions as following:
@bo (ZE) = 07
Un(x) = F(z, 0(¢n-1(2)))

for each n € Z*. Next we define ¢_,, := i, for n € Z* or equivalently

bn() = (P ().

Applying (1) to the latter when necessary we get the same equality ¢_,, =
oy, for every n € Z. Observe that for a function f satisfying (3) then holds

Un(f(2)) = f(nx).
Now we show that for all n, m € Z holds
Unim(2) = F (b (), h-n()). (4)
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Assume first n,m > 0. We show (4) with induction by m. In cases m = 0
and m = 1 the assertion is true. Assuming that (4) holds for m = u > 1 we
show that it also holds for m = u + 1:

wn—&-u-i-l(x) = F(%@), ¢—n—1($))7

whereas

Yon-1(2) = 0(¥n1a1(7)) = p(F(2,9-0)) = F(¢n, 7)

and induction hypothesis ¢,+1(x) = F(¢,(z),¥_1(z)) implies with respect
to (2)
@Du(m) = F(¢u+1(x)>$)'

Therefore, indeed

Unppir (2) = F(F (i (), 2), F(on(2), 7)) = F(upa(2), Yon(@)).

Now consider n > 0, —n < m < 0. Then —m > 0 and m +n < 0.
Therefore holds ¥, (x) = F(Y_p(x),_m_n(z)), which gives ¥, ,(2)
F(m(z),Y_pn(x)). if n > 0, m < —n we have m+n < 0 and thus ¢_,,(z)
F (4 (2), Ymyn()), which gives ¥y, 1n(2) = F(m(1), ¥_n()).

Equation (4) means that ¢ as a function of its subscript satisfies (3) for
integer arguments, and is therefore multiplying for itself. Hence ¢,1, =
Unm for all n,m € Z. Also observe that by definition 1, is bijective whenever
n # 0. This allows us to define 1,1 := 1! for n # 0. It is now clear that
we can define 9, for any ¢ € Q with all the same properties.

Denote f,(q) = ¥,(z) for z € R, ¢ € Q. Using the fact that functions ¢ and
FY are strictly monotone it is easy to check that f, is increasing if z > 0.
Fix such an x and let ¢, ¢; denote exclusively elements of Q.

Next, define f,(r) = inf >, fi(q) for r € R\Q. Then f,(¢1) < fo(r) < fu(q2)
forall ¢ <7 < ¢o. Indeed, e.g. if there was go > 7 such that ¢y = inf -, f.(q)
then the same equality would hold for any ¢ € (r,q) N Q, a contradiction
since f, is strictly monotone on Q. Also observe that f.(r) = inf,>, f.(q)
holds for any r € R.

We only need to check condition (3) now. Take ry, 75 € R. Then
FURera) fo(r2)) = FCinf fula), nf fula) = inf sup F(fela). fo(e)

BT ga>ry

= inf sup fo(q1—q2) = inf sup o(fa(ge—q1)) = inf p(inf fi(g2—q1))

=1
QU271 gy >ry G271 gy >1y Q2r1 q2272
= inf p(fe(re —q)) = inf folq —12) = folri —12).
q12>71 q12>T1

Hereby we used the facts that functions ¢, F}, and F¥ are continuous and
strictly monotone, as well as equality f.(—r) = @(fz(r)).



