
Matemaatika-informaatikateaduskonna

üli~opilaste matemaatikaolümpiaad

9. mai 2008. a.

1) T~oesta, et

lim
t→0+

(
∞∑

n=1

e−n2t

n

)
/ ln t = −1

2
.

2) Olgu P (x) trigonomeetriline polünoom astmega n, s.t.
P (x) =

∑n
k=0 ak sin(kx+ ϕk). T~oesta v~orratus

|P (x)| ≤ 1

π

∫ 2π

0

|P (t)|2 dt+
2n+ 1

8
.

3) Olgu P polünoom, kusjuures degP ≤ 2n ja |P (k)| ≤ 1 iga k ∈ Z ∩ [−n, n]
korral. T~oesta, et iga x ∈ [−n, n] korral |P (x)| ≤ 22n.

4) Tähistagu Mn k~oikide kompleksete n× n-maatriksite hulka. Olgu A ∈ Mn

regulaarne. Näita, et järgmised tingimused on samaväärsed:

(a) A ja −A on sarnased.

(b) Leiduvad maatriksid B, C ∈Mn nii, et A = B + C ja B2 + C2 = 0.

5) T~oesta v~orratus ∫ 1

0

√
1 + x2 ln2(1 + x)dx ≥

√
17

16
.

6) Olgu F : R2 → R pidev funktsioon, kusjuures k~oikide u, v, w korral

F (u, 0) = u, F (u, u) = 0, F (F (u,w), F (v, w)) = F (u, v).

T~oesta, et leidub rangelt monotoonne funktsioon f : R → R nii, et

f(x− y) = F (f(x), f(y))

k~oikide x, y ∈ R korral.
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Solutions

1) Since the function e−n2t

n
with argument t is nonnegative and decreasing, we

can conclude (as in the proof of integral test for convergence) that

0 ≤
∞∑

n=1

e−n2t

n
−
∫ ∞

1

e−x2t

x
dx ≤ e−t ≤ 1.

This implies that

lim
t→0+

(
∞∑

n=1

e−n2t

n

)
/ ln t = lim

t→0+

(∫ ∞

1

e−x2t

x
dx

)
/ ln t.

Compute∫ ∞

1

e−x2t

x
dx =

∫ ∞

√
t

e−y2

y
dy =

∫ 1

√
t

dx

x
+

∫ 1

√
t

e−x2 − 1

x
dx+

∫ ∞

1

e−x2

x
dx

and observe that the latter two integrals have �nite limits when t → 0+.
Therefore

lim
t→0+

(
∞∑

n=1

e−n2t

n

)
/ ln t = lim

t→0+

(∫ 1

√
t

dx

x

)
/ ln t = lim

t→0+

− ln
√
t

ln t
= −1

2
.

2) Observe that

1

π

∫ 2π

0

|P (t)|2 dt = 2a2
0 + a2

1 + · · ·+ a2
n ≥

≥
(
|a0| −

1

8

)
+

(
|a1| −

1

4

)
+ · · ·+

(
|an| −

1

4

)
=

= |a0|+ |a1|+ · · ·+ |an| −
2n+ 1

8
≥

n∑
k=0

|ak sin(kx+ φk)| −
2n+ 1

8
≥ |P (x)| − 2n+ 1

8

for any x ∈ R. (We used inequalities

2u2 − u+
1

8
= 2(u− 1

4
)2 ≥ 0, u2 − u+

1

4
= (u− 1

2
)2 ≥ 0.)
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3) According to Lagrange formula we have

P (x) =
n∑

k=−n

P (k)
∏
i6=k

x− i

k − i
.

Since |P (k)| ≤ 1 for k ∈ [−n, n] ∩ Z we get

|P (x)| ≤
n∑

k=−n

|P (k)|
∏
i6=k

|x− i|
|k − i|

≤
n∑

k=−n

∏
i6=k

|x− i|
|k − i|

.

For every x ∈ [−n, n] the inequality∏
i6=k

|x− i| ≤ (2n)!

holds. Indeed, in the case x ≥ k one gets

∏
i6=k

|x− i| =

(∏
i>k

|x− i|

)(∏
i<k

|x− i|

)
≤ (n−k)!((n−k+1) . . . 2n) = (2n)!.

The case x < k is done similarly. Hence∏
i6=k

|x− i|
|k − i|

≤ (2n)!
∏
i6=k

1

|k − i|
≤ (2n)!

1

(k + n)!(n− k)!
,

so

|P (x)| ≤
n∑

k=−n

(2n)!

(k + n)!(n− k)!
=

2n∑
k=0

(2n)!

k!(2n− k)!
=

2n∑
k=0

Ck
2n = 22n,

as needed.

4) (1) ⇒ (2). If A is a block matrix of the form

(
A1 0
0 A2

)
, where A1, A2

are square matrices similar to −A1,−A2, respectively, and condition (2) is
satis�ed for A1, A2, then it is clearly satis�ed for A. We may assume that
A is in Jordan normal form. The condition (1) means that for any k ∈ N,
α ∈ C the number of Jordan cells of size k corresponding to eigenvalues α
and −α is the same. A is non-degenerate, so A does not contain nilpotent

Jordan cells. Thus we reduce to the case A =

(
αE + J 0

0 −αE + J

)
.

Here α ∈ C \ {0}, E is the identity matrix, J is the nilpotent Jordan cell of
the same sizem = n

2
. One obviously can choose a basis u1, . . . , um, v1, . . . , vm

of C2n such that

Aui = αui+ui+1, Avi = αvi+vi+1, i = 1,m− 1, Aum = αum, Avm = −αvm.
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Put xi = ui + vi, yi = ui − vi. One immediately obtains

Axi = αyi +xi+1, Ayi = αxi + yi+1, i = 1,m− 1, Axm = αym, Aym = αxm.

Let us de�ne B,C ∈Mn by the following equations

Bxi = Axi, Byi = 0, Cxi = 0, Cyi = Ayi, for odd i,

Bxi = 0, Byi = Ayi, Cxi = Axi, Cyi = 0, for even i.

It is checked directly that A = B + C and B2 = C2 = 0.

(2) ⇒ (1). Put V = Cn, V1 = im(B), V2 = im(C). There is a linear map
φ : V1 ⊕ V2 7→ V , (v1, v2) 7→ v1 + v2. The image of φ clearly contains im(A)
and, since A is non-degenerate, coincides with V . From the other hand,
im(B) ⊂ ker(B), and so dimV1 ≤ dim V

2
. Analogously, dimV2 ≤ dim V

2
.

We conclude, that V = V1 ⊕ V2. It follows directly from the construction
that B(V1) = 0, C(V2) = 0, B(V2) = V, C(V1) = V2. Denote by I the linear
transformation of V such that I|V1 = id, I|V2 = −id. One checks directly
that IB = −B, BI = B, IC = C, CI = −C. Thus IAI−1 = −A.

5) Given integral can be viewed as the length of a curve de�ned by the function
F (x) =

∫
x ln(1 + x)dx on interval [0, 1]. After computing

F (x) =

∫
x ln(1 + x)dx =

1

4
(2(x2 − 1) ln(x+ 1)− (x− 2)x)

notice that F is monotone, F (0) = 0 and F (1) = 1
4
. Hence, the length of the

curve de�ned by F is not less than the distance between (0, 0) and (1, 1
4
),

which is
√

1
42 + 12 =

√
17
16
.

6) De�ne a function ϕ(x) ≡ F (0, x). It is obviously continuous. We have

ϕ(ϕ(x)) = F (0, F (0, x)) = F (F (x, x), F (0, x)) = F (x, 0) = x (1)

for all x ∈ R, hence ϕ is bijective. Therefore ϕ is strictly monotone. Also
check that ϕ(F (x, y)) ≡ F (y, x).

Consider equation y = F (t, x) and try to �nd solutions to it. It is easy to
observe that

y = F (t, x) ⇐⇒ t = F (y, ϕ(x)) ⇐⇒ x = F (ϕ(y), ϕ(t)). (2)

Now for every y ∈ R consider functions F y(x) ≡ F (y, x) and
Fy(x) ≡ F (x, y). Using (2) it is easy to check that these functions
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are bijective. Hence, strictly monotone.

Assume ϕ is increasing. Then it is easy to check that ϕ(x) ≡ x,
which means F (x, y) ≡ F (y, x) and Fy = F y. Take x0 > y0 > 0.
Then Fy0(0) = y0 > 0 = Fy0(y0), which means Fy0 is decreas-
ing. Hence F (x0, y0) = Fy0(x0) < 0. Likewise Fx0 is decreasing and
F (x0, y0) = Fx0(y0) > Fx0(x0) = 0, which is a contradiction.

Thus ϕ is decreasing. Note that ϕ(0) = 0. Now as Fy(y) = 0 > ϕ(y) = Fy(0)
i� y > 0 we see that the functions Fy (y ∈ R) are increasing. Similarly the
functions F y (y ∈ R) are decreasing.

If function f satisfying

f(x− y) ≡ F (f(x), f(y)), (3)

exists then due to (2) we get

f(x) ≡ F (f(x− y), ϕ(f(y)))

and particularly
f(2x) ≡ F (f(x), ϕ(f(x))).

More generally, for arbitrary constant n ∈ N holds

f(nx) ≡ F (f(x), ϕ(f((n− 1)x))).

This gives us an idea to de�ne "multiplying" functions as following:

ψ0(x) ≡ 0,

ψn(x) ≡ F (x, ϕ(ψn−1(x)))

for each n ∈ Z+. Next we de�ne ψ−n := ϕψn for n ∈ Z+ or equivalently

ψ−n(x) ≡ ϕ(ψn(x)).

Applying (1) to the latter when necessary we get the same equality ψ−n =
ϕψn for every n ∈ Z. Observe that for a function f satisfying (3) then holds

ψn(f(x)) ≡ f(nx).

Now we show that for all n,m ∈ Z holds

ψn+m(x) ≡ F (ψm(x), ψ−n(x)). (4)
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Assume �rst n,m ≥ 0. We show (4) with induction by m. In cases m = 0
and m = 1 the assertion is true. Assuming that (4) holds for m = µ ≥ 1 we
show that it also holds for m = µ+ 1:

ψn+µ+1(x) ≡ F (ψµ(x), ψ−n−1(x)),

whereas

ψ−n−1(x) ≡ ϕ(ψn+1(x)) ≡ ϕ(F (x, ψ−n)) ≡ F (ψ−n, x)

and induction hypothesis ψµ+1(x) ≡ F (ψµ(x), ψ−1(x)) implies with respect
to (2)

ψµ(x) ≡ F (ψµ+1(x), x).

Therefore, indeed

ψn+µ+1(x) ≡ F (F (ψµ+1(x), x), F (ψ−n(x), x)) ≡ F (ψµ+1(x), ψ−n(x)).

Now consider n ≥ 0, −n < m < 0. Then −m > 0 and m + n < 0.
Therefore holds ψn(x) ≡ F (ψ−m(x), ψ−m−n(x)), which gives ψm+n(x) ≡
F (ψm(x), ψ−n(x)). If n ≥ 0, m < −n we have m+n < 0 and thus ψ−m(x) ≡
F (ψn(x), ψm+n(x)), which gives ψm+n(x) ≡ F (ψm(x), ψ−n(x)).

Equation (4) means that ψ as a function of its subscript satis�es (3) for
integer arguments, and is therefore multiplying for itself. Hence ψnψm ≡
ψnm for all n,m ∈ Z. Also observe that by de�nition ψn is bijective whenever
n 6= 0. This allows us to de�ne ψn−1 := ψ−1

n for n 6= 0. It is now clear that
we can de�ne ψq for any q ∈ Q with all the same properties.

Denote fx(q) = ψq(x) for x ∈ R, q ∈ Q. Using the fact that functions ϕ and
F y are strictly monotone it is easy to check that fx is increasing if x > 0.
Fix such an x and let q, qi denote exclusively elements of Q.

Next, de�ne fx(r) = infq>r fx(q) for r ∈ R\Q. Then fx(q1) < fx(r) < fx(q2)
for all q1 < r < q2. Indeed, e.g. if there was q0 > r such that q0 = infq>r fx(q)
then the same equality would hold for any q ∈ (r, q0) ∩ Q, a contradiction
since fx is strictly monotone on Q. Also observe that fx(r) = infq≥r fx(q)
holds for any r ∈ R.
We only need to check condition (3) now. Take r1, r2 ∈ R. Then

F (fx(r1), fx(r2)) = F ( inf
q1≥r1

fx(q1), inf
q2≥r2

fx(q2)) = inf
q1≥r1

sup
q2≥r2

F (fx(q1), fx(q2))

= inf
q1≥r1

sup
q2≥r2

fx(q1−q2) = inf
q1≥r1

sup
q2≥r2

ϕ(fx(q2−q1)) = inf
q1≥r1

ϕ( inf
q2≥r2

fx(q2−q1))

= inf
q1≥r1

ϕ(fx(r2 − q1)) = inf
q1≥r1

fx(q1 − r2) = fx(r1 − r2).

Hereby we used the facts that functions ϕ, Fy and F y are continuous and
strictly monotone, as well as equality fx(−r) = ϕ(fx(r)).
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