Matemaatika-informaatikateaduskonna üliõpilaste matemaatikaolümpiaad

9. mai 2008. a.
1) Tõesta, et

$$
\lim _{t \rightarrow 0+}\left(\sum_{n=1}^{\infty} \frac{e^{-n^{2} t}}{n}\right) / \ln t=-\frac{1}{2}
$$

2) Olgu $P(x)$ trigonomeetriline polünoom astmega n, s.t. $P(x)=\sum_{k=0}^{n} a_{k} \sin \left(k x+\varphi_{k}\right)$. Tõesta võrratus

$$
|P(x)| \leq \frac{1}{\pi} \int_{0}^{2 \pi}|P(t)|^{2} d t+\frac{2 n+1}{8}
$$

3) Olgu P polünoom, kusjuures $\operatorname{deg} P \leq 2 n$ ja $|P(k)| \leq 1$ iga $k \in \mathbb{Z} \cap[-n, n]$ korral. Tõesta, et iga $x \in[-n, n]$ korral $|P(x)| \leq 2^{2 n}$.
4) Tähistagu M_{n} kõikide kompleksete $n \times n$-maatriksite hulka. Olgu $A \in M_{n}$ regulaarne. Näita, et järgmised tingimused on samaväärsed:
(a) $A \mathrm{ja}-A$ on sarnased.
(b) Leiduvad maatriksid $B, C \in M_{n}$ nii, et $A=B+C$ ja $B^{2}+C^{2}=0$.
5) Tõesta võrratus

$$
\int_{0}^{1} \sqrt{1+x^{2} \ln ^{2}(1+x)} d x \geq \sqrt{\frac{17}{16}}
$$

6) Olgu $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ pidev funktsioon, kusjuures kõikide u, v, w korral

$$
F(u, 0)=u, F(u, u)=0, F(F(u, w), F(v, w))=F(u, v) .
$$

Tõesta, et leidub rangelt monotoonne funktsioon $f: \mathbb{R} \rightarrow \mathbb{R}$ nii, et

$$
f(x-y)=F(f(x), f(y))
$$

kõikide $x, y \in \mathbb{R}$ korral.

Solutions

1) Since the function $\frac{e^{-n^{2} t}}{n}$ with argument t is nonnegative and decreasing, we can conclude (as in the proof of integral test for convergence) that

$$
0 \leq \sum_{n=1}^{\infty} \frac{e^{-n^{2} t}}{n}-\int_{1}^{\infty} \frac{e^{-x^{2} t}}{x} d x \leq e^{-t} \leq 1
$$

This implies that

$$
\lim _{t \rightarrow 0+}\left(\sum_{n=1}^{\infty} \frac{e^{-n^{2} t}}{n}\right) / \ln t=\lim _{t \rightarrow 0+}\left(\int_{1}^{\infty} \frac{e^{-x^{2} t}}{x} d x\right) / \ln t
$$

Compute

$$
\int_{1}^{\infty} \frac{e^{-x^{2} t}}{x} d x=\int_{\sqrt{t}}^{\infty} \frac{e^{-y^{2}}}{y} d y=\int_{\sqrt{t}}^{1} \frac{d x}{x}+\int_{\sqrt{t}}^{1} \frac{e^{-x^{2}}-1}{x} d x+\int_{1}^{\infty} \frac{e^{-x^{2}}}{x} d x
$$

and observe that the latter two integrals have finite limits when $t \rightarrow 0+$. Therefore

$$
\lim _{t \rightarrow 0+}\left(\sum_{n=1}^{\infty} \frac{e^{-n^{2} t}}{n}\right) / \ln t=\lim _{t \rightarrow 0+}\left(\int_{\sqrt{t}}^{1} \frac{d x}{x}\right) / \ln t=\lim _{t \rightarrow 0+} \frac{-\ln \sqrt{t}}{\ln t}=-\frac{1}{2} .
$$

2) Observe that

$$
\begin{gathered}
\frac{1}{\pi} \int_{0}^{2 \pi}|P(t)|^{2} d t=2 a_{0}^{2}+a_{1}^{2}+\cdots+a_{n}^{2} \geq \\
\geq\left(\left|a_{0}\right|-\frac{1}{8}\right)+\left(\left|a_{1}\right|-\frac{1}{4}\right)+\cdots+\left(\left|a_{n}\right|-\frac{1}{4}\right)= \\
=\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{n}\right|-\frac{2 n+1}{8} \geq \\
\sum_{k=0}^{n}\left|a_{k} \sin \left(k x+\phi_{k}\right)\right|-\frac{2 n+1}{8} \geq|P(x)|-\frac{2 n+1}{8}
\end{gathered}
$$

for any $x \in \mathbb{R}$. (We used inequalities

$$
\left.2 u^{2}-u+\frac{1}{8}=2\left(u-\frac{1}{4}\right)^{2} \geq 0, u^{2}-u+\frac{1}{4}=\left(u-\frac{1}{2}\right)^{2} \geq 0 .\right)
$$

3) According to Lagrange formula we have

$$
P(x)=\sum_{k=-n}^{n} P(k) \prod_{i \neq k} \frac{x-i}{k-i} .
$$

Since $|P(k)| \leq 1$ for $k \in[-n, n] \cap \mathbb{Z}$ we get

$$
|P(x)| \leq \sum_{k=-n}^{n}|P(k)| \prod_{i \neq k} \frac{|x-i|}{|k-i|} \leq \sum_{k=-n}^{n} \prod_{i \neq k} \frac{|x-i|}{|k-i|}
$$

For every $x \in[-n, n]$ the inequality

$$
\prod_{i \neq k}|x-i| \leq(2 n)!
$$

holds. Indeed, in the case $x \geq k$ one gets

$$
\prod_{i \neq k}|x-i|=\left(\prod_{i>k}|x-i|\right)\left(\prod_{i<k}|x-i|\right) \leq(n-k)!((n-k+1) \ldots 2 n)=(2 n)!.
$$

The case $x<k$ is done similarly. Hence

$$
\prod_{i \neq k} \frac{|x-i|}{|k-i|} \leq(2 n)!\prod_{i \neq k} \frac{1}{|k-i|} \leq(2 n)!\frac{1}{(k+n)!(n-k)!}
$$

so

$$
|P(x)| \leq \sum_{k=-n}^{n} \frac{(2 n)!}{(k+n)!(n-k)!}=\sum_{k=0}^{2 n} \frac{(2 n)!}{k!(2 n-k)!}=\sum_{k=0}^{2 n} C_{2 n}^{k}=2^{2 n}
$$

as needed.
4) $(1) \Rightarrow(2)$. If A is a block matrix of the form $\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right)$, where A_{1}, A_{2} are square matrices similar to $-A_{1},-A_{2}$, respectively, and condition (2) is satisfied for A_{1}, A_{2}, then it is clearly satisfied for A. We may assume that A is in Jordan normal form. The condition (1) means that for any $k \in \mathbb{N}$, $\alpha \in \mathbb{C}$ the number of Jordan cells of size k corresponding to eigenvalues α and $-\alpha$ is the same. A is non-degenerate, so A does not contain nilpotent Jordan cells. Thus we reduce to the case $A=\left(\begin{array}{cc}\alpha E+J & 0 \\ 0 & -\alpha E+J\end{array}\right)$.
Here $\alpha \in \mathbb{C} \backslash\{0\}, E$ is the identity matrix, J is the nilpotent Jordan cell of the same size $m=\frac{n}{2}$. One obviously can choose a basis $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{m}$ of $\mathbb{C}^{2 n}$ such that

$$
A u_{i}=\alpha u_{i}+u_{i+1}, A v_{i}=\alpha v_{i}+v_{i+1}, i=\overline{1, m-1}, A u_{m}=\alpha u_{m}, A v_{m}=-\alpha v_{m} .
$$

Put $x_{i}=u_{i}+v_{i}, y_{i}=u_{i}-v_{i}$. One immediately obtains
$A x_{i}=\alpha y_{i}+x_{i+1}, A y_{i}=\alpha x_{i}+y_{i+1}, i=\overline{1, m-1}, A x_{m}=\alpha y_{m}, A y_{m}=\alpha x_{m}$.

Let us define $B, C \in M_{n}$ by the following equations

$$
\begin{aligned}
& B x_{i}=A x_{i}, B y_{i}=0, C x_{i}=0, C y_{i}=A y_{i}, \text { for odd } i, \\
& B x_{i}=0, B y_{i}=A y_{i}, C x_{i}=A x_{i}, C y_{i}=0, \text { for even } i .
\end{aligned}
$$

It is checked directly that $A=B+C$ and $B^{2}=C^{2}=0$.
(2) \Rightarrow (1). Put $V=\mathbb{C}^{n}, V_{1}=\operatorname{im}(B), V_{2}=\operatorname{im}(C)$. There is a linear map $\phi: V_{1} \oplus V_{2} \mapsto V,\left(v_{1}, v_{2}\right) \mapsto v_{1}+v_{2}$. The image of ϕ clearly contains $\operatorname{im}(A)$ and, since A is non-degenerate, coincides with V. From the other hand, $\operatorname{im}(B) \subset \operatorname{ker}(B)$, and so $\operatorname{dim} V_{1} \leq \operatorname{dim} \frac{V}{2}$. Analogously, $\operatorname{dim} V_{2} \leq \operatorname{dim} \frac{V}{2}$. We conclude, that $V=V_{1} \oplus V_{2}$. It follows directly from the construction that $B\left(V_{1}\right)=0, C\left(V_{2}\right)=0, B\left(V_{2}\right)=V, C\left(V_{1}\right)=V_{2}$. Denote by I the linear transformation of V such that $\left.I\right|_{V_{1}}=\mathrm{id},\left.I\right|_{V_{2}}=-\mathrm{id}$. One checks directly that $I B=-B, B I=B, I C=C, C I=-C$. Thus $I A I^{-1}=-A$.
5) Given integral can be viewed as the length of a curve defined by the function $F(x)=\int x \ln (1+x) d x$ on interval $[0,1]$. After computing

$$
F(x)=\int x \ln (1+x) d x=\frac{1}{4}\left(2\left(x^{2}-1\right) \ln (x+1)-(x-2) x\right)
$$

notice that F is monotone, $F(0)=0$ and $F(1)=\frac{1}{4}$. Hence, the length of the curve defined by F is not less than the distance between $(0,0)$ and $\left(1, \frac{1}{4}\right)$, which is $\sqrt{\frac{1}{4^{2}}+1^{2}}=\sqrt{\frac{17}{16}}$.
6) Define a function $\varphi(x) \equiv F(0, x)$. It is obviously continuous. We have

$$
\begin{equation*}
\varphi(\varphi(x))=F(0, F(0, x))=F(F(x, x), F(0, x))=F(x, 0)=x \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}$, hence φ is bijective. Therefore φ is strictly monotone. Also check that $\varphi(F(x, y)) \equiv F(y, x)$.

Consider equation $y=F(t, x)$ and try to find solutions to it. It is easy to observe that

$$
\begin{equation*}
y=F(t, x) \Longleftrightarrow t=F(y, \varphi(x)) \Longleftrightarrow x=F(\varphi(y), \varphi(t)) . \tag{2}
\end{equation*}
$$

Now for every $y \in \mathbb{R}$ consider functions $F^{y}(x) \equiv F(y, x)$ and $F_{y}(x) \equiv F(x, y)$. Using (2) it is easy to check that these functions
are bijective. Hence, strictly monotone.

Assume φ is increasing. Then it is easy to check that $\varphi(x) \equiv x$, which means $F(x, y) \equiv F(y, x)$ and $F_{y}=F^{y}$. Take $x_{0}>y_{0}>0$. Then $F_{y_{0}}(0)=y_{0}>0=F_{y_{0}}\left(y_{0}\right)$, which means $F_{y_{0}}$ is decreasing. Hence $F\left(x_{0}, y_{0}\right)=F_{y_{0}}\left(x_{0}\right)<0$. Likewise $F_{x_{0}}$ is decreasing and $F\left(x_{0}, y_{0}\right)=F_{x_{0}}\left(y_{0}\right)>F_{x_{0}}\left(x_{0}\right)=0$, which is a contradiction.

Thus φ is decreasing. Note that $\varphi(0)=0$. Now as $F_{y}(y)=0>\varphi(y)=F_{y}(0)$ iff $y>0$ we see that the functions $F_{y}(y \in \mathbb{R})$ are increasing. Similarly the functions $F^{y}(y \in \mathbb{R})$ are decreasing.

If function f satisfying

$$
\begin{equation*}
f(x-y) \equiv F(f(x), f(y)), \tag{3}
\end{equation*}
$$

exists then due to (2) we get

$$
f(x) \equiv F(f(x-y), \varphi(f(y)))
$$

and particularly

$$
f(2 x) \equiv F(f(x), \varphi(f(x))) .
$$

More generally, for arbitrary constant $n \in \mathbb{N}$ holds

$$
f(n x) \equiv F(f(x), \varphi(f((n-1) x))) .
$$

This gives us an idea to define "multiplying" functions as following:

$$
\begin{gathered}
\psi_{0}(x) \equiv 0 \\
\psi_{n}(x) \equiv F\left(x, \varphi\left(\psi_{n-1}(x)\right)\right)
\end{gathered}
$$

for each $n \in \mathbb{Z}^{+}$. Next we define $\psi_{-n}:=\varphi \psi_{n}$ for $n \in \mathbb{Z}^{+}$or equivalently

$$
\psi_{-n}(x) \equiv \varphi\left(\psi_{n}(x)\right) .
$$

Applying (1) to the latter when necessary we get the same equality $\psi_{-n}=$ $\varphi \psi_{n}$ for every $n \in \mathbb{Z}$. Observe that for a function f satisfying (3) then holds

$$
\psi_{n}(f(x)) \equiv f(n x)
$$

Now we show that for all $n, m \in \mathbb{Z}$ holds

$$
\begin{equation*}
\psi_{n+m}(x) \equiv F\left(\psi_{m}(x), \psi_{-n}(x)\right) . \tag{4}
\end{equation*}
$$

Assume first $n, m \geq 0$. We show (4) with induction by m. In cases $m=0$ and $m=1$ the assertion is true. Assuming that (4) holds for $m=\mu \geq 1$ we show that it also holds for $m=\mu+1$:

$$
\psi_{n+\mu+1}(x) \equiv F\left(\psi_{\mu}(x), \psi_{-n-1}(x)\right)
$$

whereas

$$
\psi_{-n-1}(x) \equiv \varphi\left(\psi_{n+1}(x)\right) \equiv \varphi\left(F\left(x, \psi_{-n}\right)\right) \equiv F\left(\psi_{-n}, x\right)
$$

and induction hypothesis $\psi_{\mu+1}(x) \equiv F\left(\psi_{\mu}(x), \psi_{-1}(x)\right)$ implies with respect to (2)

$$
\psi_{\mu}(x) \equiv F\left(\psi_{\mu+1}(x), x\right)
$$

Therefore, indeed

$$
\psi_{n+\mu+1}(x) \equiv F\left(F\left(\psi_{\mu+1}(x), x\right), F\left(\psi_{-n}(x), x\right)\right) \equiv F\left(\psi_{\mu+1}(x), \psi_{-n}(x)\right)
$$

Now consider $n \geq 0,-n<m<0$. Then $-m>0$ and $m+n<0$. Therefore holds $\psi_{n}(x) \equiv F\left(\psi_{-m}(x), \psi_{-m-n}(x)\right)$, which gives $\psi_{m+n}(x) \equiv$ $F\left(\psi_{m}(x), \psi_{-n}(x)\right)$. If $n \geq 0, m<-n$ we have $m+n<0$ and thus $\psi_{-m}(x) \equiv$ $F\left(\psi_{n}(x), \psi_{m+n}(x)\right)$, which gives $\psi_{m+n}(x) \equiv F\left(\psi_{m}(x), \psi_{-n}(x)\right)$.

Equation (4) means that ψ as a function of its subscript satisfies (3) for integer arguments, and is therefore multiplying for itself. Hence $\psi_{n} \psi_{m} \equiv$ $\psi_{n m}$ for all $n, m \in \mathbb{Z}$. Also observe that by definition ψ_{n} is bijective whenever $n \neq 0$. This allows us to define $\psi_{n^{-1}}:=\psi_{n}^{-1}$ for $n \neq 0$. It is now clear that we can define ψ_{q} for any $q \in \mathbb{Q}$ with all the same properties.
Denote $f_{x}(q)=\psi_{q}(x)$ for $x \in \mathbb{R}, q \in \mathbb{Q}$. Using the fact that functions φ and F^{y} are strictly monotone it is easy to check that f_{x} is increasing if $x>0$. Fix such an x and let q, q_{i} denote exclusively elements of \mathbb{Q}.
Next, define $f_{x}(r)=\inf _{q>r} f_{x}(q)$ for $r \in \mathbb{R} \backslash \mathbb{Q}$. Then $f_{x}\left(q_{1}\right)<f_{x}(r)<f_{x}\left(q_{2}\right)$ for all $q_{1}<r<q_{2}$. Indeed, e.g. if there was $q_{0}>r$ such that $q_{0}=\inf _{q>r} f_{x}(q)$ then the same equality would hold for any $q \in\left(r, q_{0}\right) \cap \mathbb{Q}$, a contradiction since f_{x} is strictly monotone on \mathbb{Q}. Also observe that $f_{x}(r)=\inf _{q \geq r} f_{x}(q)$ holds for any $r \in \mathbb{R}$.
We only need to check condition (3) now. Take $r_{1}, r_{2} \in \mathbb{R}$. Then

$$
\begin{gathered}
F\left(f_{x}\left(r_{1}\right), f_{x}\left(r_{2}\right)\right)=F\left(\inf _{q_{1} \geq r_{1}} f_{x}\left(q_{1}\right), \inf _{q_{2} \geq r_{2}} f_{x}\left(q_{2}\right)\right)=\inf _{q_{1} \geq r_{1}} \sup _{q_{2} \geq r_{2}} F\left(f_{x}\left(q_{1}\right), f_{x}\left(q_{2}\right)\right) \\
=\inf _{q_{1} \geq r_{1}} \sup _{q_{2} \geq r_{2}} f_{x}\left(q_{1}-q_{2}\right)=\inf _{q_{1} \geq r_{1}} \sup _{q_{2} \geq r_{2}} \varphi\left(f_{x}\left(q_{2}-q_{1}\right)\right)=\inf _{q_{1} \geq r_{1}} \varphi\left(\inf _{q_{2} \geq r_{2}} f_{x}\left(q_{2}-q_{1}\right)\right) \\
=\inf _{q_{1} \geq r_{1}} \varphi\left(f_{x}\left(r_{2}-q_{1}\right)\right)=\inf _{q_{1} \geq r_{1}} f_{x}\left(q_{1}-r_{2}\right)=f_{x}\left(r_{1}-r_{2}\right) .
\end{gathered}
$$

Hereby we used the facts that functions φ, F_{y} and F^{y} are continuous and strictly monotone, as well as equality $f_{x}(-r)=\varphi\left(f_{x}(r)\right)$.

