Understanding CO2 Electrosorption on Conductive Metal-Organic-Frameworks

Iuliia Vetik^{1,*}, Vitali Grozovski¹, Nadezda Kongi¹

¹Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia *iuliia.vetik@ut.ee

The escalating demand for affordable carbon dioxide capture solutions is becoming increasingly urgent. To cap the global temperature rise at 1.5 °C within the next century, substantial advancements in CO₂ mitigation are imperative. Current capture methods, such as amine scrubbing, face significant challenges, including high energy requirements for regeneration, high operational expenses, and durability issues.

An emerging and energy-efficient alternative to traditional methods involves electrochemically driven carbon dioxide capture.¹ For instance, redox-active quinone molecules possess the capability to adsorb CO_2 through electrochemical reduction and can subsequently release it during oxidation.^{2,3} Despite notable progress in quinone chemistry for electrochemical CO_2 capture, integrating these molecules into practical carbon capture devices remains a persistent challenge.⁴

In this work, we introduce a new candidate for direct electrosorbent of CO_2 - a conductive metal-organic framework (MOF). This MOF is characterized by its open metal sites and ultramicroporosity. The feasibility of the material to adsorb/desorb CO_2 through an electrochemically driven process has been demonstrated using cyclic voltammetry. Notably, in the specific applied potential window, desorption of CO_2 occurred without the reduction of carbon dioxide. CO_2 electrosorption was investigated in various aqueous electrolytes, with sodium perchlorate being the optimal choice for material evaluation. One of the primary advancements of utilizing MOFs for CO_2 electrosorption on MOFs is the possibility of operating under mild conditions — ambient pressure, temperature, and neutral pH. This study opens new avenues for designing and discovering improved materials for electrochemical CO_2 capture.

Acknowledgements

This work was supported by the University of Tartu Feasibility Fund (Grant 145RE) and by the Estonian Ministry of Education and Research (TK210).

References

- 1 M. Ozkan, A. Shiner, N. Kongi, T. A. Hatton, S. Oldham and E. Sanders, Chem, 2024, 10, 3-6.
- 2 H. Seo and T. A. Hatton, Nat. Commun., 2023, 14, 313.
- 3 S. Voskian and T. A. Hatton, Energy Environ. Sci., 2019, 12, 3530–3547.
- 4 F. Simeon, M. C. Stern, K. M. Diederichsen, Y. Liu, H. J. Herzog and T. A. Hatton, *J. Phys. Chem. C*, 2022, **126**, 1389–1399.