Supercapacitors based on well decomposed peat derived carbon electrodes using ZnCl₂ activation step for the carbon synthesis

Maarja Paalo^{1,*}, Meelis Härmas¹, Tavo Romann¹, Enn Lust¹, Alar Jänes¹

¹Institute of Chemistry, University of Tartu, 14A Ravila Str, 50411 Tartu, Estonia *maarja.paalo@ut.ee

 $ZnCl_2$ activation method was used to synthesize micro- and mesoporous carbon material from Estonian well decomposed peat. Our workgroup preliminary data for Estonian well decomposed peat derived carbon (PDC) based supercapacitorss demonstrated that the amount of mesopores icarbon particles was very low and therefore, an activation method was used, using $ZnCl_2$ as an activator. Chemical activation is considered an effective method for increasing porosity of carbonaceous materials.^{1,2}

The synthesized material has S_{BET} value of 1270 m² g⁻¹, compared to the S_{BET} value of 270 m² g⁻¹ without the activation step. The comparative pore size distribution data (Figure 1a) show that in addition to micropores, a very big amount of mesopores have been formed after the ZnCl₂ activation step, inevitable for quick mass-transfer processes of ionic liquid ions.³

The material was tested as an electrode material in a supercapacitor cell with ionic liquid EmimBF₄ as an electrolyte. The cyclic voltammetry, impedance spectroscopy and constant current charge/discharge cycles data show that the material is useable for stationary electricity storage in local small-scale wind farms and local PV electricity generating fields. The characteristic time constant (τ_R) of the PDC|EmimBF₄ is 3.35 s and is longer than for micro-mesoporous sol–gel titanium carbide derived carbon $\tau_R = 0.80$ s, but is shorter than for activated sucrose derived carbon ($\tau_R = 20$ s) and carbon cloth ($\tau_R = 8$ s), thus, the τ_R correlates very well with the micro-mesoporosity ratio of carbons under systematic studies at University of Tartu.⁴⁻⁶ The constant power test data show that very high energy densities E = 50 Wh kg⁻¹ at moderate power densities P = 10 kW kg⁻¹ can be achieved (Figure 1b).³

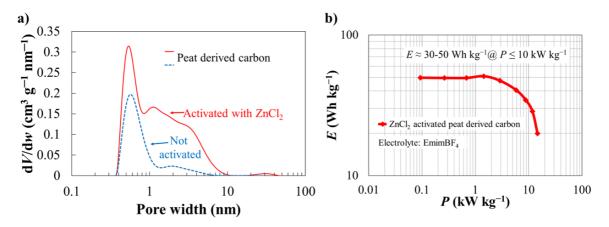


Figure 1. Pore size distribution for peat derived carbon activated with ZnCl₂ and not activated peat derived carbon (a) gravimetric Ragone plot for supercapacitors based on activated PDC|EmimBF₄ (b).

Acknowledgements

This work was supported by the EU through the European Regional Development Fund project TK141 (2014–2020.4.01.15–0011), Institutional Research Grant IUT20–13 and Personal Research Grant PRG676.

References

- ¹ M. Härmas, R. Palm, T. Thomberg *et al*, J. Appl. Electrochem. 50 (2020) 15.
- ² R. Jäger, P. Teppor, M. Paalo et al, Catalysts 11 (2021) 715.
- ³ M. Paalo, M. Härmas, T. Romann, A. Jänes, E. Lust, Electrochemistry Communications 153 (2023) 107543.
- ⁴ M. Paalo, I. Tallo, T. Thomberg, A. Jänes, E. Lust, J. Electrochem, Soc 166 (2019) A2887.
- ⁵ L. Wei, G. Yushin, J. Power Sources 196 (2011) 4072.
- ⁶ H. Kurig, M. Vestli, K. Tõnurist, A. Jänes, E. Lust, J. Electrochem. Soc. 159 (2012) A944.