Scalable synthesis of polymer-based atomically dispersed electrocatalysts for rechargeable zinc-air batteries

<u>Yogesh Kumar^{1,*}</u>, Srinu Akula¹, Jekaterina Kozlova², Arvo Kikas², Jaan Aruväli³, Maike Käärik¹, Alexey Treshchalov², Jaan Leis¹, Vambola Kisand², Kaupo Kukli², Elo Kibena-Põldsepp¹, Kaido

Tammeveski¹

 ¹ Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
² Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
³ Institute of Ecology and Earth Science, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia E-mail: vogesh.kumar@ut.ee

The escalating global demand for clean energy has encouraged extensive research into advanced energy storage technologies, with rechargeable zinc-air batteries (RZABs) standing out due to their high voltage, energy density, low cost and eco-friendliness.¹ However, challenges persist regarding sluggish kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air electrode, often mitigated with costly and scarce precious metal-based catalysts.² Transition metals offer more sustainable alternative, with recent focus on atomically dispersed catalysts (ADCs) to address issues of agglomeration and enhance efficiency.³ While promising, ADC synthesis methods and scalability pose many challenges. Polymer-derived carbons have emerged as a scalable solution, offering tailored metal environments conducive to efficient catalysts for oxygen electrocatalysis from transition metal-embedded polymer frameworks. The STEM image indicates the uniform dispersion of single-atom sites (Figure 1a). The resulting FeCoN-PDF-T₂-2 catalyst exhibits good bifunctional activity ($\Delta E = 0.75$ V) and electrochemical stability for ORR/OER showing potential for RZAB application with superior performance ($P_{max} = 258$ mW cm⁻²) (Figure 1b), thus highlighting the feasibility of large-scale production and offering new avenues for further exploration in catalyst synthesis methods.

Figure 1. (a) STEM image of a FeCoN-PDF-T₂-2 catalyst, (b) discharge polarisation and power density curves of Znair battery with FeCoN-PDF-T₂-2 and PtRu/C air electrode.

References:

[1] Y. Kumar, M. Mooste, K. Tammeveski, Curr. Opin. Electrochem. 38 (2023) 101229.

- [2] S. Hussain, H. Erikson, N. Kongi, A. Sarapuu, J. Solla-Gullón, G. Maia, A.M. Kannan, N. Alonso-Vante, K. Tammeveski, Int. J. Hydrogen Energy 45 (2020) 31775–31797.
- [3] A. Sarapuu, J. Lilloja, S. Akula, J.H. Zagal, S. Specchia, K. Tammeveski, ChemCatChem 15 (2023) e202300849.