ZIF-8 based composite catalysts for oxygen reduction electrocatalysis

<u>Rohit Kumar^{1,*}</u>, Marek Mooste¹, Zubair Ahmed¹, Srinu Akula¹, Ivar Zekker¹, Maike Käärik¹, Margus Marandi¹, Jaan Leis¹, Arvo Kikas², Markus Otsus², Alexey Treshchalov², Jaan Aruväli³,

Vambola Kisand², Aile Tamm², Kaido Tammeveski¹

¹Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia

²Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia

³Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia

E-mail: rohit.kumar@ut.ee

Polymer electrolyte fuel cells are next-generation energy conversion devices to meet the future green-energy demands. However, the strong bond energy of O_2 molecule makes it difficult to break electrochemically which as a result leads to the slower oxygen reduction reaction (ORR) kinetics at cathode.¹ In this work, we report on Fe/Co doped and CNT supported ZIF-8 based composite catalysts for boosting the ORR in 0.1 M KOH. The catalysts (ZIF-8@CNT) were prepared via high-temperature pyrolysis at 900 °C and characterized using various physicochemical techniques and employed as cathode materials in anion exchange membrane fuel cell (AEMFC).² All the synthesized catalysts, metal-free (ZNT-900), single-metal-doped (Fe-ZNT-900, Co-ZNT-900) and binary-metal-doped (Fe₁Co₁-ZNT-900, Fe₁Co₂-ZNT-900) carry a porous morphology with a good amount of N-moieties and the presence of FeCo alloys in the carbon skeleton of bimetallic materials. The rotating disc electrode (RDE) polarization curves showed that Fe₁Co₂-ZNT-900 exhibited the maximum halfwave potential $(E_{1/2})$ of 0.85 V vs. RHE which surpassed the commercial Pt/C catalyst $(E_{1/2} = 0.83 \text{ V})$ (Figure 1a). The Koutecky-Levich plots and RRDE measurement showed that the ORR followed mainly the 4ereduction pathway with a peroxide (HO₂⁻⁾ yield of 22.5% for Fe₁Co₂-ZNT-900 catalyst (Figure 1b). The assynthesized catalyst materials were further tested in H2-O2 AEMFC, where the Fe1Co2-ZNT-900 cathode delivered a maximum power density (P_{max}) of 0.171 W cm⁻² and current density at 0.5 V ($j_{0.5}$) of 0.326 A cm⁻², which is very close to that of the Pt/C catalyst ($P_{\text{max}} = 0.215 \text{ W cm}^{-2}$ and $j_{0.5} = 0.359 \text{ A cm}^{-2}$). The prepared ZIF-8@CNT catalysts showed remarkable electrocatalytic ORR activity in 0.1 M KOH solution and fuel cell performance comparable to that of the benchmark Pt/C catalyst. All in all, the bimetallic ZIF-8@CNT catalysts performed quite well in AEMFC and the results were comparable to those of similar materials and these catalysts should be explored more in-depth to achieve more promising results in AEM fuel cells.

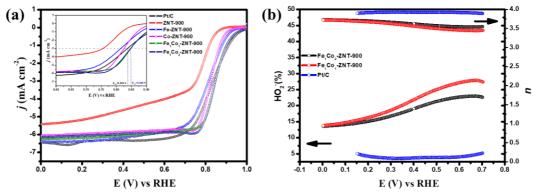


Figure 1: (a) RDE polarization curves for oxygen reduction in O_2 -saturated 0.1 M KOH at 1900 rpm for all the catalyst materials and (b) HO_2 - yield and electron tranfer number (*n*) for the bimetallic catalyst materials.

Acknowledgements

The present work was financially supported by the Estonian Research Council (PRG723, PRG4, and PRG1509) and by the EU through the European Regional Development Fund (TK141, TK134, and TK143).

References

- 1. A. Sarapuu, J. Lilloja, S. Akula, J.H. Zagal, S. Specchia, K. Tammeveski, Recent advances in non-precious metal single-atom electrocatalysts for oxygen reduction reaction in low-temperature polymer-electrolyte fuel cells. ChemCatChem 15 (2023) e202300849.
- R. Kumar, M. Mooste, Z. Ahmed, S. Akula, I. Zekker, M. Marandi, M. Käärik, J. Leis, A. Kikas, A. Treshchalov, M. Otsus, J. Aruväli, V. Kisand, A. Tamm, K. Tammeveski, Highly active ZIF-8@CNT composite catalysts as cathode materials for anion exchange membrane fuel cells, Industrial Chemistry & Materials 1 (2023) 526-541.