Quasi-elastic neutron scattering for studying the self-diffusion of H₂ adsorbed in carbide-derived carbons for H₂ storage applications

Miriam Koppel^{1,*}, Rasmus Palm¹, Riinu Härmas¹, Mark Telling², Manh Duc Le², Tatiana Guidi², Margarita Russina³, Veronika Grzimek³, Kenneth Tuul¹, Maarja Paalo¹, Laura Kalder¹, Jacek Jagiello⁴, Tavo Romann¹, Jaan Aruväli⁵, Heisi Kurig¹, Martin Månsson⁶, Enn Lust¹

¹ Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
² ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
³ Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
⁴ Micromeritics Instrument Corporation, 4356 Communications Dr, Norcross, GA 30093, US
⁵ Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
⁶ Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
*miriam.koppel@ut.ee

Porous materials have attracted interest as H_2 storage materials since these can help to alleviate the problem of low storing temperature (20 K) and high storing pressure (300–700 bar) needed to increase the volumetric and gravimetric density of H_2 . Namely, the optimal conditions for using porous adsorbents are in the temperature range of 77–150 K and the storage pressure of ~250 bar. The structure of the adsorbent has been shown to have a great impact on the self-diffusion of adsorbed H_2 .

Carbide-derived carbons (CDCs) are unique model materials for investigating the impact of the structure of the adsorbents on the H_2 self-diffusion rate and nature since CDCs have a relatively versatile structure. Quasielastic neutron scattering (QENS) is a well-suited technique to study the self-diffusion of adsorbed H_2 since neutrons are sensitive towards H_2 , neutron energies are suitable to study diffusional processes and neutrons have a large penetration depth allowing *in situ* experiments.

The self-diffusion of H₂ adsorbed in CDCs has been investigated with QENS at temperatures of 20–100 K when the amounts of H₂ adsorbed in CDCs are 2–130 mmol per 1 g of CDC ensuring different pore volume occupancies. The self-diffusion of adsorbed H₂ is shown to occur over multiple timescales (Figure 1) and the confinement of the adsorbed H₂ depends on the pore wall corrugation, i.e., the volume of ultramicropores¹ (pore width w < 7 Å). The self-diffusion of H₂ adsorbed in larger pores, i.e., micro- (w < 20 Å) and mesopores (20 Å < w < 500 Å), the adsorbed H₂ is more mobile (Figure 1b) and the self-diffusion mechanism is translational². Such distinction between components of adsorbed H₂ are only possible to be made by applying QENS over a wide temporal range and these results provide valuable insight into the nature of H₂ self-diffusional dynamics and structure of adsorbents for cryo-adsorptive system development.

Figure 1: Effectively immobile (gray), mobile (dark blue), and very mobile (light blue) fractions of H_2 adsorbed in a) ultramicropores (4 mmol g^{-1}) and b) micropores (21 mmol g^{-1}) of a CDC from QENS.

Acknowledgements

The staff of ISIS pulsed neutron and muon source and Helmholtz-Zentrum Berlin are thanked for beamtime and support; this research was supported through TK141, SLTKT16432T, PUTJD957, and PRG676.

References

1 M. Koppel, R. Palm, R. Härmas *et al.*, Carbon, 2022, **197**, 359–367.

2 M. Koppel, R. Palm, R. Härmas et al., Carbon, 2024, 219, 118799.