The Importance of CO Attack on the Formation of C₂₊ Products over Fe-phthalocyanine Single Atom Catalysts

Reza Khakpour,^a Kaveh Farshadfar,^a Kari, Laasonen, ^a Michael Busch^{b,c}

^a Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland

^b Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden; E-mail: <u>michael.busch@ltu.se</u>

° Wallenberg Initiative Materials Science for Sustainability (WISE), Luleå University of Technology, 971 87 Luleå, Sweden

Email: Reza.Khakpour@aalto.fi

Electroreduction of CO_2 to value-added products with more than one carbon atom (C_{2+}) is an advantageous route for direct synthesis of value-added products. CO_2 reduction reaction (CO_2RR) to C_{2+} products has traditionally been dominated by solid state heterogeneous electrocatalysts, such as copper (Cu) [1]. In contrast to this, single atom catalysts (SACs) are used primarily to convert CO2 into C1 products, such as carbon monoxide, formate, methanol and methane [2-3]. However, certain experimental data suggests that iron phthalocyanine (FePc) as a single-atom catalyst (SAC), can produce limited quantities of compounds containing two or more carbon atoms, such as ethylene (C_2H_4), ethane (C_2H_6), propene (C_3H_6), and propane (C_3H_8) [4, 5]. A comprehensive understanding of the underlying mechanism behind this significant advancement is still lacking. Indeed, uncovering such a mechanism could pave the way for the development of SACs utilizing transition metal-doped graphene. In this research, our goal is to explore and analyze various reaction mechanisms that could result in the formation of post-CO and C₂₊ products over FePc, employing density functional theory (DFT) calculations. Our computational results demonstrate that at a negative applied potential, CO binds more firmly to the Fe-CO intermediate, making it kinetically more challenging to be released. Consequently, the formation of post-CO via proton attack on Fe-CO becomes more feasible. After surpassing the CO step, the reaction progresses smoothly without encountering significant thermodynamic or kinetic barriers towards forming a Schrock-type carbene (Fe=CH₂). Our findings indicate that although methanol formation is thermodynamically feasible, it is impeded by a high activation barrier. Subsequently, C_{2+} products are generated through CO direct attack at the carbene. Our analysis indicates that this reaction encounters only minor thermodynamic and kinetic barriers.

References

1. Nitopi, Stephanie, et al. "Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte." Chemical reviews 119.12 (2019): 7610-7672.

2. Hossain, M. Noor, et al. "Temperature-Controlled Syngas Production via Electrochemical CO2 Reduction on a CoTPP/MWCNT Composite in a Flow Cell." ACS Applied Energy Materials (2022).

3. Abdinejad, Maryam, et al. "Electrocatalytic reduction of CO2 to CH4 and CO in aqueous solution using pyridine-porphyrins immobilized onto carbon nanotubes." ACS Sustainable Chemistry & Engineering 8.25 (2020): 9549-9557.

4. Dong, Si-Thanh, Chen Xu, and Benedikt Lassalle-Kaiser. "Multiple C–C bond formation upon electrocatalytic reduction of CO2 by an iron-based molecular macrocycle." Chemical Science (2023).

5. Khakpour, R.; Farshadfar, K.; Dong, S.-T.; Lassalle-Kaiser, B.; Laasonen, K.; Busch, M. "The Mechanism of CO2 Electroreduction to Multi-carbon Products over Iron Phthalocyanine Single-Atom Catalyst. " Chemarxiv (2023).