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While the majority of experimental and theoretical work on semiconductor electrochemistry has 
been conducted in aqueous electrolyte solutions [1, 2], studies in aprotic media are relatively 
limited. However, electrochemistry in, e.g., LiTFSI+acetonitrile provides valuable insights for 
applications in energy storage and conversion, such as Li-batteries and dye-sensitized solar cells 
[3, 4]. Optimizing of these technologies requires detailed information about the electronic 
structure near the conduction band minimum (CBM) of an oxide semiconductor [5]. However, 
the analysis of CBM structure is challenging, sometimes even impossible for fundamental reasons 
[4-6]. By investigating a representative array of materials, ranging from macroscopic single 
crystals in different face orientations to polycrystalline and quasi-amorphous thin films on various 
substrates, we explored their electrochemical behavior in both aqueous and acetonitrile electrolyte 
solutions. This yielded quite self-consistent information, also highlighting some issues with a 
more general impact [4]. Representative examples of these challenges include: (i) Determination 
of flatband potentials and donor concentrations by Mott-Schottky analysis, particularly for 
nanotextured materials. There is a significant spread of flatband potentials for TiO2, SnO2, and 
ZnO, and overestimated concentrations of majority charge carriers, which could even incorrectly 
predict degenerated semiconductors [2];  (ii) Calculation of work functions and band edges by 
DFT, ignoring the effects of sample environment and/or defects in real crystals [4, 7]; (iii) 
Measurement of work functions and band edges by a single experimental technique only (e.g., by 
photoelectron spectroscopy, Kelvin probe, or electrochemistry), disregarding the inherently poor 
reproducibility of values from each individual technique [4, 6]; (iv) Transposition of these 
problematic data, both theoretical and experimental, into discussions of water splitting, solar fuel 
generation, solar cells, and Li-ion batteries [4]; (v) Application of the Gärtner-Butler model for 
carrier dynamics in a semiconductor photoanode, disregarding the gradient of electrochemical 
potentials as the driving force for e-/h+ separation [4, 8]. 
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