Enhanced capacity retention of MnO₂ cathode enabled by Bi doping

Ramona Dūrena^{1,*}, Ņikita Griščenko¹, Anzelms Zukuls¹

¹Institute of Materials and Surface Engineering, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Street 7, LV-1048 Riga, Latvia. *ramona.durena@rtu.lv

Zn-ion batteries (ZIBs) are a promising future technology to complement Li-ion batteries as ZIBs consist of less expensive and non-toxic elements. One of the most promising cathode materials for ZIBs is MnO_2 .¹ However, it is plagued by several surmountable shortcomings like the dissolution of active material due to corrosion, deterioration of the electrode's structure, and a reduction in capacity. A way to overcome these shortcomings is to introduce heteroatoms into the structure of the active material.^{1,2}

In this work, we have synthesized Bi-doped MnO_2 by hydrothermal synthesis method. Bi-doping was fixed at concentrations – 0, 0.5, 1, 2.5, 5 and 10 mol%. Afterwards, a slurry was obtained by mixing Bi-MnO₂ powders with carbon black Vulcan and PVDF solution in NMP to form cathode materials on carbon paper. In a similar fashion cathodes with purchased MnO_2 active materials were formed for reference. The samples were analysed with an X-ray diffractometer, Raman spectrometer, and scanning electron microscope with energy-dispersive X-ray spectroscopy (EDX). Also, cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and impedance measurements were performed.

The as-prepared samples consisted of α - and δ - MnO₂ mixture. Samples with high Bi doping showed also additional BiOCl phase. As seen from the electrochemical measurement results in Figure 1, synthesized material cathodes had higher specific capacity than a cathode constructed from purchased MnO₂. Also, improved capacity retention was seen for samples with larger Bi-doping. After electrochemical measurements, all the samples showed only δ -MnO₂ phase and EDX results revealed homogenous Bi atom scattering for samples with Bi doping.

In conclusion, Bi doping enhances capacity retention by promoting α -MnO₂ phase formation that is more electrochemically active. As the Bi³⁺ ion is two times larger than the Mn⁴⁺ ion, the Bi promotes 2x2 tunnel structure formation by occupying inter-lattice space inside the tunnels. In addition, Bi doping improves the electrical conductivity of MnO₂.

Figure 1: a) Specific capacities from CV measurements at various scan speeds and b) discharge capacities from GCD measurements at various current densities of purchased, undoped and Bi-doped MnO2 samples.

Acknowledgements

This work was supported by the Latvian Council of Science in the framework of FLPP (Investigation of electrodes and electrolytes for obtaining amphoteric decoupled rechargeable batteries, lzp-2021/1–0142).

References

- 1. L. Meng, Y. Zhu, Y. Lu, T. Liang, L. Zhou, J. Fan, Y. Kuo, P. Guan, T. Wan, L. Hu and D. Chu, ChemElectroChem, 2024, 11, e2023004.
- 2. G. G. Yadav, X. Wei, J. Huang, D. Turney, M. Nyce and S. Banerjee, Int J Hydrogen Energy, 2018, 43, 8480–8487.
- 3. Y. Ma, M. Xu, R. Liu, H. Xiao, Y. Liu, X. Wang, Y. Huang and G. Yuan, Energy Storage Mater, 2022, 48, 212–222.