Study of Fe₂O₃ and TiO₂ molar ratio impact on lithium-ion battery anode performance

K. Kaprans, <u>G. Bajars</u>*, G. Kucinskis

Institute of Solid-State Physics, University of Latvia, Riga, Latvia *gunars.bajars@cfi.lu.lv

Rapid development of portable electronic devices and electric vehicles demand batteries with higher energy density, greater safety and longer cycle life. Transition metal oxide Fe_2O_3 has become a promising anode material for Li-ion batteries due to its high theoretical capacity and low cost¹. However, the poor conductivity and violent volume expansion of Fe_2O_3 during the discharge/charge process results in its poor rate capability and cycling performance. The addition of TiO₂ prevents these problems because TiO₂ has good cycling stability and a low volume expansion ratio². Therefore, a ternary $Fe_2O_3/TiO_2/rGO$ anode material showed better electrochemical performance compared to the binary Fe_2O_3/rGO and TiO_2/rGO electrodes³. In this work, we study the Fe_2O_3 and TiO₂ molar ratio impact on lithium-ion battery anode performance.

The electrode materials of iron oxide, titanium dioxide and reduced graphene oxide (rGO) for lithium-ion batteries were prepared by electrophoretic deposition and their applicability was evaluated. A composition, structure and morphology of the electrode materials were investigated by scanning electron microscopy, atomic force microscopy, X-ray diffraction analysis, Raman spectroscopy, microspectral X-ray analysis and X-ray photoelectron spectroscopy.

In this study obtained gravimetric capacities of the ternary $Fe_2O_3/TiO_2/rGO$ composite anode material at the discharge current 0.5 mA are 571, 683, 729 mAh/g for the nanocomposite electrode materials Fe_2O_3/TiO_2 in molar ratios of 1:1 (FT11), 2:1 (FT21) and 3:1 (FT31), respectively. After 400 charge-discharge cycles at the current value 1 mA, the FT11, FT21 and FT31 nanocomposites retain 58 %, 81 % and 17 % of their initial gravimetric capacities, respectively. Based on the results of rate capability, cyclability and gravimetric capacity measurements, we conclude that the nanocomposite with a molar ratio of Fe_2O_3 to TiO_2 (2:1) has a potential as high-performance electrode material for lithium-ion batteries.

The results obtained in this work extend the understanding about interaction between two transition metal oxides for the preparation of high-performance electrode materials for lithium-ion batteries by using a cheap, simple and environmentally friendly method. The possibility to adjust the properties of electrode (rate capability, gravimetric capacity, cyclability) makes it promising for lithium-ion battery applications such as laptops, power tools, smartphones, drones, electric cars, etc.

Acknowledgements

Support of European Union's Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2917-Teaming Phase 2, grant agreement No. 739508, project CAMART2 is greatly acknowledged.

References

¹D. Kong, C. Cheng, Y. Wang, B. Liu, Z. Huang and H. Y. Yang. J. Mater. Chem. A. 2016, 4, 11800–11811.

²Y. Yang, Q. Liu, M. Cao, Q. Ju, H. Wang, R. Fu, H. Ji and G. Yang. Appl. Surf. Sci. 2019, 463, 322–330.

³K. Kaprans, J. Mateuss, A. Dorondo, G. Bajars, G. Kucinskis, P. Lesnicenoks and J. Kleperis. *Solid State Ionics*, 2018, **319**, 1–6.