Ultra-thin Defective TiO₂ Films as Photocathodes for Selective CO₂ Reduction to Formate

Mahsa Amiri^{1,*}, Majid Ahmadi², Nabil Khossossi³, Prasaanth R. Anusuyadevi³, Prasad Gonugunta³, Khatereh Roohi³, Poloumi Dey³, Peyman Taheri³, Tanel Tätte¹, Nadezda Kongi⁴, Alexander Vanetsev¹

 ¹ Institute of Physics, University of Tartu, 50411, Tartu, Estonia
² Faculty of Science and Engineering, University of Groningen, 9747 AG, Groningen, Netherlands
³ Department Materials Science and Engineering, Delft University of Technology, 2628 CD Delft, Netherlands
⁴Institute of Chemistry, University of Tartu, 50411, Tartu, Estonia *mahsa.amiri@ut.ee

In this study, titanium dioxide (TiO_2) is utilized as a photoelectrocatalyst in the carbon dioxide reduction reaction (CO_2RR) . TiO_2 is cheap, stable, and exhibits substantial absorption in the near-visible ultraviolet spectrum. Despite these advantages, TiO_2 has low efficiency in electrochemical processes due to its low electrical conductivity. We address this issue by developing ultra-thin and highly defective TiO_2 films (TiO_2 -DTF) with a thickness of less than 15 nanometers to enhance the electrical conductivity and selectivity towards formate production during photoelectrochemical CO_2RR . These TiO_2 -DTF were synthesized through a simple, replicable sol-gel technique, resulting in smooth, ultra-thin layers with a high density of surface defects.

The catalytic performance of TiO₂-DTF was investigated under photochemical and photoelectrochemical conditions for CO₂RR. It was observed that applying an electrical potential improved both the product yield and selectivity for formate. To understand the underlying mechanism of photoelectrochemical CO₂RR on TiO₂-DTF, *in-situ* attenuated total reflection Fourier-transform infrared spectroscopy (*in-situ* ATR-FTIR) was utilized. This analysis provided insights into the CO₂ photoelectroreduction process. Additionally, the experimental findings were supported by density functional theory (DFT) studies.

This research demonstrates that the selectivity and efficiency of TiO_2 films in CO_2 reduction can be significantly enhanced by modulating film thickness and defect density. In addition, this work opens new pathways for using a cost-effective and environmentally friendly sol-gel process for fabricating ultra-thin, defective TiO_2 films and their promising application in photoelectrocatalysis of CO_2RR .

Acknowledgments

This work was supported by the Estonian Research Council (PSG250, PRG629) and by the Estonian Ministry of Education and Research (TK210).