FT-IR microspectroscopy

Prof. Ivo Leito

IR microspectroscopy

- Enables analysis of very small samples
 - Small particles, thin fibres, ...
- Local analysis of details of large samples
 - Layer-by-layer analysis of multilayer samples
- IR mapping and Imaging
 - Contrast occurs on the basis of some IR spectral properties

IR microspectroscopy

- Can be realised as
 - an "add-on" to an FT-IR spectrometer or
 - a standalone FT-IR microspectrometer
- Different sampling techniques can be used
 - ATR, Transmission, Reflection

Thermo Fisher Nicolet iN10 MX FT-IR microscope

Bruker FT-IR Microspectroscopic Imaging (used with permission)

Thermo Fisher Nicolet™ Continuµm™ Infrared Microscope (Photo: www.thermo.com/) (used with permission)

Sampling techniques

ATR	REFLECTION	TRANSMISSION
Contact technique	Non-contact technique	Non-contact technique
 Any solid samples can be analysed. 	 Any solid samples can be analysed 	 Sample should be very thin and transparent.
 High signal to noise ratio 	 Low signal to noise ratio 	High signal to noise ratio
 ATR spectra are not very different from the transmission mode spectra 	Reflectance spectra are different from the transmission mode spectra	Spectra correspond to the typical IR spectra
 Spectrum can be recorded from an area with few µm diameter 	 For good spectrum the area should be around 100 µm in diameeter 	
Germanium tip ATR		

Video: Analysis with IR microspectroscopy: https://sisu.ut.ee/heritage-analysis/book/31-ir-spectroscopy

Homogeneity analysis with ATR-FTIR mapping

Polyester – cotton textile

- Mapping made using v C=O at 1714 cm⁻¹
- Area 16.25 mm², 294 spectra in total

Peets, P.; Leito, I.; Pelt, J.; Vahur, S. Spectrochimica Acta Part A. 2017, 173, 175-181.

IR spectra from specific points and mapping

Summary

- Useful technique for the analysis of
 - very small samples (few µm)
 - small details of large samples
- Different sampling techniques (transmission, reflection, ATR).
- IR mapping of selected areas on the sample and collecting multiple spectra.