Infrared (IR) spectroscopy: basics of instrumentation

Prof. Ivo Leito

Fourier Transform IR spectrometer

Advantages of the Fourier transform design:

- Maximum use of radiation (better SN ratio)
- Fast spectral averaging is possible
- Accurate wavenumber scale

Notes on beamsplitters in the interferometer of FT-IR spectrometer

Parameters	Csl windows	KBr windows
Wavenumber region	Down to 200 cm ⁻¹	Down to 400 cm ⁻¹
Hygroscopicity	Very hygroscopic	Less hygroscopic than KBr
Hardness	Soft	Reasonably hard

Notes on detectors of FT-IR spectrometers

Parameters	Deuterated Triglycine Sulphate (DTGS)	Mercury Cadmium Telluride (MCT)
Wavenumber region	DTGS: 12000 – 350 cm ⁻¹ DLaTGS: 6400 – 200 cm ⁻¹	11 700 – 600/ 400 cm ⁻¹
Sensitivity	Less sensitive	Up to 10 times more sensitive than DTGS
Signal to noise ratio	Satisfactory	Good
Needs cooling?	No	Yes (at liquid nitrogen temperature)
Time of measurement	Slow	Ca 3-4 times faster than DTGS
Price	Inexpensive	Several times higher than DTGS
Usage	Ordinary FT-IR spectrometers	High-end FT-IR spectro- meters, microspectrometers

FT-IR sampling techniques

Classical techniques

Transmission spectroscopy

- KBr pellet method is used
 - Sample is powdered with the KBr and pressed into pellet.
 - Solids and liquids can be analysed
 - Qualitative analysis
 - Problems with small samples
- Liquids
- Gases

Modern techniques

Attenuated Total Reflectance FT-IR (ATR-FT-IR) spectroscopy

- Contact technique
- Easy, fast, universal
- Qualitative and quantitative analysis
- Small samples
- Paints, varnishes, fibres, polymers, etc

Reflection techniques

- Non-contact technique
- Big energy losses
- Paints, varnishes, fibres, polymers, etc

FT-IR microspectroscopy

- Very small samples
- Imaging, mapping
- Paints, varnishes, fibres, polymers, etc

Summary

- Almost all contemporary IR spectrometers are FT-IR spectrometers
 - Good SN ratio, fast, accurate wavenumber scale
- Instruments for different applications can be equipped with different components
 - E.g. DTGS detector for ordinary measurements, MCT detector for demanding measurements
- Diverse sampling techniques are available for use of FT-IR