General aspects of X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) Peeter Somelar, PhD Research Fellow in Geology ## X-Ray Diffraction (XRD) * Measures crystalline materials like ceramics, metals, intermetallics, minerals, inorganic compounds ## X-Ray Diffraction (XRD) - * X-ray beam hits a crystal, scattering the beam in a manner characterized by the atomic structure - * The beam reflected from the lower surface travels farther than the one reflected from the upper surface ## **Advantages and Disadvantages of XRD** #### **Advantages** - * Fast identification of materials - * Easy sample preparation - * Large database of known crystalline structures - * Computer-aided material identification #### **Disadvantages** - * Impossible to identify directly amorpheous materials - * Quantitative analysis need grinding ## Sample preparation #### **Semi-quantitative analysis:** *Pieces with smooth/even surfaces (NB: has to fit into sample holder) - *Powders - * Min. sample needed for analysis 0.2 2 g #### **Quantitative analysis:** - *Homogenous powders (grinding needed) - * Min. sample needed for analysis 2-5 g Ball mill samples (~ 15 –30 g) ## XRD – Crystal phase determination - * Crystal phase analysis is possible by comparing the XRD patterns with library of known crystalline structures (minerals/phases) - * Analysis of XRD patterns are complicate and need help from the specialist ## X-Ray Fluorescence (XRF) #### **Handheld / Portable XRF** *XRF is a method for measuring the **elemental composition** of studied sample ## X-Ray Fluorescence (XRF) * Measures emission of characteristic secondary X- rays from a material that has been excited by bombarding with high energy X-Rays. * Characteristic X-Rays are unique for each element ## **Advantages and Disadvantages of XRF** ## Wavelength Dispersive X-Ray Fluorescence (WD-XRF) #### **Advantages** - * Fast elemental analysis (from seconds up to 30 min) - * Elemental mapping - * Computer-aided material identification #### **Disadvantages** - * Qualitative limit is 10-20 ppm - * Quantitative analysis need grinding - *Impossible to measure **elements** lighter than **Boron** ## **Energy Dispersive X-Ray Fluorescence (ED-XRF)** #### **Advantages** - * Instant elemental analysis - * Cost-efficient - * In-situ analyzes - *No sample preparation - * Easy to use #### Disadvantages - * Short analytical and application range - * Typically measures starting from Mg to U ## Sample preparation (WD-XRF) #### Semi quantitative: Smooth/even surface (sample) is fitted into sample holder (NB has to fit into sample holder) #### **Quantitative:** - 1) The pressed pellet method grinded sample is pressed into pellet using mechanical or hydraulic press (min. sample weight needed for analyze 6 -15g) - * method is convenient and relatively easy - * By grinding the particle size effect can be eliminated only to a certain extent - * Mineralogical composition has to be identical to the standard - 2) The fused bead method previously weighted sample together with lithium borate is mixed in platinum dish and subjected to high temperatures. The fusion melt is then casted into a casting mould and cooled (min. sample weight needed for analyze 1-5g) - * quite a time-consuming process - * The effective particle size is almost atomic - * mineralogy effects are eliminated For more detailed overview please look the vidio from following site: https://sisu.ut.ee/heritage-analysis/book/42-xrf ### **Interpretation of WD-XRF Spectra** - * Computer-aided material identification - * Interpretation is easier compared to XRD ## X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) in Art and Archaeology Studies #### *Cellulose-based materials #### **Paper** - *paper consists of two main components: cellulose and additives - *Cellulose is partially crystalline and the technique used for its characterization consists in determining the crystallinity value that decreases owing to the ageing. #### *Pigments; paints pigments, as crystalline materials #### *Stone; mortars recognizing composition degradation or conservation state in some cases provenance #### *Metals, alloys corrosion Products In the case of small samples, they can be analysed directly in the diffractometer itself. For the objects of major size some micro- samples are drawn in order to perform analyses.