General aspects of X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF)

Peeter Somelar, PhD Research Fellow in Geology

X-Ray Diffraction (XRD)

* Measures crystalline materials like ceramics, metals, intermetallics, minerals, inorganic compounds

X-Ray Diffraction (XRD)

- * X-ray beam hits a crystal, scattering the beam in a manner characterized by the atomic structure
- * The beam reflected from the lower surface travels farther than the one reflected from the upper surface

Advantages and Disadvantages of XRD

Advantages

- * Fast identification of materials
- * Easy sample preparation
- * Large database of known crystalline structures
- * Computer-aided material identification

Disadvantages

- * Impossible to identify directly amorpheous materials
- * Quantitative analysis need grinding

Sample preparation

Semi-quantitative analysis:

*Pieces with smooth/even surfaces

(NB: has to fit into sample holder)

- *Powders
- * Min. sample needed for analysis 0.2 2 g

Quantitative analysis:

- *Homogenous powders (grinding needed)
- * Min. sample needed for analysis 2-5 g

Ball mill samples (~ 15 –30 g)

XRD – Crystal phase determination

- * Crystal phase analysis is possible by comparing the XRD patterns with library of known crystalline structures (minerals/phases)
- * Analysis of XRD patterns are complicate and need help from the specialist

X-Ray Fluorescence (XRF)

Handheld / Portable XRF

*XRF is a method for measuring the **elemental composition** of studied sample

X-Ray Fluorescence (XRF)

* Measures emission of characteristic secondary X- rays from a material that has been excited by bombarding with high energy X-Rays.

* Characteristic X-Rays are unique for each element

Advantages and Disadvantages of XRF

Wavelength Dispersive X-Ray Fluorescence (WD-XRF)

Advantages

- * Fast elemental analysis (from seconds up to 30 min)
- * Elemental mapping
- * Computer-aided material identification

Disadvantages

- * Qualitative limit is 10-20 ppm
- * Quantitative analysis need grinding
- *Impossible to measure **elements** lighter than **Boron**

Energy Dispersive X-Ray Fluorescence (ED-XRF)

Advantages

- * Instant elemental analysis
- * Cost-efficient
- * In-situ analyzes
- *No sample preparation
- * Easy to use

Disadvantages

- * Short analytical and application range
- * Typically measures starting

from Mg to U

Sample preparation (WD-XRF)

Semi quantitative:

Smooth/even surface (sample) is fitted into sample holder (NB has to fit into sample holder)

Quantitative:

- 1) The pressed pellet method grinded sample is pressed into pellet using mechanical or hydraulic press (min. sample weight needed for analyze 6 -15g)
 - * method is convenient and relatively easy
 - * By grinding the particle size effect can be eliminated only to a certain extent
 - * Mineralogical composition has to be identical to the standard
- 2) The fused bead method previously weighted sample together with lithium borate is mixed in platinum dish and subjected to high temperatures. The fusion melt is then casted into a casting mould and cooled (min. sample weight needed for analyze 1-5g)
 - * quite a time-consuming process
 - * The effective particle size is almost atomic
 - * mineralogy effects are eliminated

For more detailed overview please look the vidio from following site:

https://sisu.ut.ee/heritage-analysis/book/42-xrf

Interpretation of WD-XRF Spectra

- * Computer-aided material identification
- * Interpretation is easier compared to XRD

X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) in Art and Archaeology Studies

*Cellulose-based materials

Paper

- *paper consists of two main components: cellulose and additives
- *Cellulose is partially crystalline and the technique used for its characterization consists in determining the crystallinity value that decreases owing to the ageing.

*Pigments; paints

pigments, as crystalline materials

*Stone; mortars

recognizing composition degradation or conservation state in some cases provenance

*Metals, alloys corrosion Products

In the case of small samples, they can be analysed directly in the diffractometer itself.

For the objects of major size some micro- samples are drawn in order to perform analyses.