Chemistry of ageing:

I. INTRODUCTION

Prof. Ivo Leito

Aged materials

The Bible (Estonia, 1773) Photo: Liisa Eero

Chest (16th c.)

Anna III (15th c.)

前日日日

Gpcarp +

Ageing process

- All materials age with time as a result of physicalchemical-biological processes, which lead to material degradation
 - The processes are e.g. oxidation/corrosion, hydrolysis, polymerization, formation of mould, etc
 - Ageing process is irreversible
- Ageing rate (speed) depends on:
 - \circ nature of material
 - $_{\odot}$ environmental factors

Cultural heritage objects chemistry ≈ chemistry of ageing

Chemistry of ageing:

II. ENVIRONMENTAL FACTORS

Prof. Ivo Leito

Temperature

- Increase of temperature accelerates ageing
- Van't Hoff rule:

$$v_{t_2} = v_{t_1} \cdot \gamma^{\frac{t_2 - t_1}{10}}$$

$$\gamma = 2 \dots 4$$

• The rate (speed) of most of the chemical processes increases by 2 .. 4 times when the temperature increases by 10 degrees

***Temperature**

• Reaction rate depends on temperature of exponentially

Humidity

ABSOLUTE HUMIDITY

The **amount of water** in a **volume unit** of air

RELATIVE HUMIDITY (RH)

The ratio of the **actual absolute humidity** to the **maximum possible absolute humidity** at the respective temperature (often expressed in %)

Relative humidity and temperature

• Relative humidity depends equally on

Absolute humidity and temperature

At constant absolute humidity, the lower the temperature the higher the RH

• Rule of thumb: near room temperature, temperature decrease by 10 °C leads to RH increase of 2 times

Temperature	RH
20 °C	40 %
10 °C	80 %

Relative humidity for the CH materials

Light

- Light: visible light and UV radiation
- Light mostly has damaging effect on materials via promoting photochemical reactions
 - Photochemical reactions cause bleaching, yellowing/ browning and darkening of materials

- Organic materials are most light affected
- Inorganic materials are usually stable to light

Chemical factors

Biological factors

Chemistry of ageing:

III. EXAMPLE: LINSEED OIL

Prof. Ivo Leito

Linseed oil

(http://www.seedguides.info/linseed-oil/) (licence CC-by -SA 3.0)

- Obtained from the dried, ripened seeds of the flax plant (Linum usitatissimum)
- Consists of different fatty acid triglycerides

Composition of linseed oil

Maturing/degrading of the dried oil

ATR-FT-IR spectra of linseed oil + pigments

Chemistry of ageing:

IV. EXAMPLE: DAMMAR RESIN

Prof. Ivo Leito

Dammar resin

Is obtained from various species of trees belonging to the *Dipterocarpaceae* family

R1: O/ OH, H; **R2**: OH, H/ CH₂; **R3**: OH/ OMe; **R4 and R5**: CH₃/ H; **R6**: COOH, H/ CHO, H

Vahur, S.; Teearu, A.; Haljasorg, T.; Burk, P.; Leito, I.; Kaljurand, I. Journal of Mass Spectrometry, 2012, 47(3), 392 - 409.

Components of dammar resin

MALDI-FT-ICR-MS spectrum of dammar resin

Vahur, S.; Teearu, A.; Haljasorg, T.; Burk, P.; Leito, I.; Kaljurand, I. J. Mass Spectrom, 2012, 47(3), 392 - 409.

MALDI-FTMS spectrum of dammar resin (first cluster)

Abundance Intensity (%)

- Due ageing the composition of CH materials is usually very complex
- Analysis of the aged materials is challenging, both in terms of knowledge as well as instrumentation

• More information is on the web:

https://sisu.ut.ee/heritage-analysis/