Comparison between the translation and rotation:

Translation

The basic quantity is coordinate x - the distance of a moving body from the reference body along some choosen axis.

The initial value of the coordinate $x_{0}=x(t=0)$
The displacement $s=x-x_{0}=\Delta x$ reached during the time interval $\Delta t=t^{\prime}-t_{0} \quad\left(\Delta t=t^{\prime}\right.$ if $\left.t_{0}=0\right)$
The velocity in case of the uniform translation: $v=\frac{\Delta x}{\Delta t}=\frac{s}{t}$
SI unit: meter per second ($1 \mathrm{~m} / \mathrm{s}$)
The equation of motion in case of the uniform translation:

$$
x=x_{0}+v t
$$

The average velocity of the non-uniform translation: $v_{\text {avg }}=\frac{\Delta x}{\Delta t}$
The instantaneous velocity: $v(t)=\lim \frac{\Delta x}{\Delta t}=\frac{\mathrm{d} x}{\mathrm{~d} t}, \Delta t \rightarrow 0$
The constant acceleration: $a=\frac{v-v_{0}}{t}$ (SI unit $1 \mathrm{~m} / \mathrm{s}^{2}$)
Dependence of the velocity v on time $t: \quad v=v_{0}+a t$
The instantaneous value of acceleration: $a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}$
The equation of motion in case of the constant acceleration:

$$
x=x_{0}+v_{0} t+\frac{a t^{2}}{2}
$$

The case of unknown time interval: $v^{2}-v_{0}{ }^{2}=2 a s$
The velocity of change of acceleration: $b=\frac{a-a_{0}}{t}\left(\mathrm{~m} / \mathrm{s}^{3}\right)$ t
Dependence of the acceleration a on time $t: \quad a=a_{0}+b t$
The equation of motion in case of the constant parameter b :

$$
x=x_{0}+v_{0} t+a_{0} t^{2} / 2+b t^{3} / 6
$$

Rotation

The basic quantity is coordinate angle θ - the angle with respect to the reference position of the rotating body (reference line).

The initial value of the coordinate angle $\theta_{0}=\theta(t=0)$
The angular displacement $\varphi=\theta-\theta_{0}=\Delta \theta$ reached during the time

$$
\text { interval } \Delta t=t^{\prime}-t_{0} \quad\left(\Delta t=t^{\prime} \text { if } t_{0}=0\right)
$$

The angular velocity in case of the uniform rotation: $\omega=\frac{\Delta \theta}{\Delta t}=\frac{\varphi}{t}$ SI unit: radian per second ($1 \mathrm{rad} / \mathrm{s}$ or $1 \mathrm{~s}^{-1}$)
The equation of motion in case of the uniform rotation:

$$
\theta=\theta_{0}+\omega t
$$

The average angular velocity of the non-uniform rotation: $\omega_{\text {avg }}=\frac{\Delta \theta}{\Delta t}$
The instantaneous angular velocity $\omega(t)=\lim \frac{\Delta \theta}{\Delta t}=\frac{\mathrm{d} \theta}{\mathrm{d} t}, \Delta t \rightarrow 0$
The constant angular acceleration: $\alpha=\frac{\omega-\omega_{0}}{t}$ (SI unit $1 \mathrm{rad} / \mathrm{s}^{2}$)
Dependence of the angular velocity ω on time $t: \quad \omega=\omega_{0}+\alpha t$
The instantaneous value of angular acceleration: $\alpha(t)=\frac{\mathrm{d} \omega}{\mathrm{d} t}=\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}$
The equation of motion in case of the constant angular acceleration:

$$
\theta=\theta_{0}+\omega_{0} t+\frac{\alpha t^{2}}{2}
$$

The case of unknown time interval: $\omega^{2}-\omega_{0}{ }^{2}=2 \alpha \varphi$
The velocity of change of angular acceleration: $\beta=\frac{\alpha-\alpha_{0}}{t} \quad\left(\mathrm{~s}^{-3}\right)$
Dependence of the angular acceleration α on time $t: \alpha=\alpha_{0}+\beta t$
The equation of motion in case of the constant parameter β :

$$
\theta=\theta_{0}+\omega_{0} t+\alpha_{0} t^{2} / 2+\beta t^{3} / 6
$$

The intensity of the interaction is described by force \mathbf{F} SI unit newton: $1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$.
The property of the body to maintain its state of the translational motion (the property of inertia) is described by the (inertial) mass \boldsymbol{m} (SI unit 1 kg)

The Newton's 1-st law: If $\mathbf{F}_{\text {net }}=0$, then $\boldsymbol{a}=0$ and $\mathbf{v}=$ const. The body is at rest or in uniform motion along the straight line. The Newton's 2-nd law: If $\mathbf{F}_{\text {net }} \neq 0$, then $a=\frac{1}{m} F_{\text {net }}, \mathbf{F}_{\text {net }}=m \boldsymbol{a}$ The body moves translationally with an acceleration which is proportional to the net force $\mathbf{F}_{\text {net }}$.
The Newton's 3-rd law: $\mathbf{F}_{12}=-\mathbf{F}_{21}$.
The force \mathbf{F}_{12} exerted by one body (1) onto the other one (2) is equal by magnitude to the force \mathbf{F}_{21} exerted by second body (2) on the first one (1), whereas these forces have opposite directions.

The linear momentum $\mathbf{p}=m \mathbf{v}$ shows us the ability of the translationally moving body to bring other bodies into motion

$$
\text { (SI unit } 1 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \text {). }
$$

The action of a force on the rotation of the body is described by torque $\tau=\mathbf{r} \times \mathbf{F}$ (vector product). SI unit newton-meter: $1 \mathrm{~N} \cdot \mathrm{~m}$
The property of the body to maintain its state of the rotational motion is described by the rotational inertia I (SI unit $1 \mathrm{~kg} \mathrm{~m}^{2}$). The single particle with the mass m rotating at the distance r (radius) from the rotational axis has the rotational inertia $I=m r^{2}$.
The Newton's 1 -st law: If $\tau_{\text {net }}=0$, then $\alpha=0$ and $\boldsymbol{\omega}=$ const. The body is at rest or performs uniform rotation.
The Newton's 2-nd law: If $\tau_{\text {net }} \neq 0$, then $\alpha=\frac{1}{I} \tau_{\text {net }}, \tau_{\text {net }}=I \alpha$
The body moves rotationally with an angular acceleration which is proportional to the net torque $\tau_{\text {net }}$.
The Newton's 3-rd law: $\tau_{12}=-\tau_{21}$.
The torque τ_{12} exerted by one body (1) onto the other one (2) is equal by magnitude to the torque τ_{21} exerted by second body (2) on the first one (1), whereas these torques have opposite directions.

The angular momentum $\mathbf{L}=I \omega$ shows us the ability of the rotationally moving body to bring other bodies into motion (SI unit $1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$). The single particle with the mass m rotating at the distance r (radius) from the rotational axis with the velocity v has the angular momentum $L=m v r$.
The net angular momentum of the isolated system is conserved:

$$
\Sigma \mathbf{L}_{i}=\text { const }
$$

The fundamental equation of the rotational motion (the Newton's

$$
\text { second law): } \boldsymbol{\tau}=\frac{\mathrm{d} \mathbf{L}}{\mathrm{~d} t}
$$

The torque τ causes the change of the angular momentum \mathbf{L}.
Work in case of rotation: $W=\tau \cdot \varphi$ (scalar product)
Kinetic energy in case of rotation: $\quad E_{k, \text { rot }}=\frac{I \omega^{2}}{2}$

