Translation	Rotation
The basic quantity is coordinate x – the distance of a moving	The basic quantity is coordinate angle θ – the angle with respect to
body from the reference body along some choosen axis.	the reference position of the rotating body (reference line).
The initial value of the coordinate $x_0 = x (t = 0)$	The initial value of the coordinate angle $\theta_0 = \theta (t = 0)$
The displacement $s = x - x_0 = \Delta x$ reached during the time	The angular displacement $\varphi = \theta - \theta_0 = \Delta \theta$ reached during the time
interval $\Delta t = t' - t_0$ ($\Delta t = t'$ if $t_0 = 0$)	interval $\Delta t = t' - t_0$ ($\Delta t = t'$ if $t_0 = 0$)
The velocity in case of the uniform translation: $v = \frac{\Delta x}{\Delta t} = \frac{s}{t}$	The angular velocity in case of the uniform rotation: $\omega = \frac{\Delta \theta}{\Delta t} = \frac{\varphi}{t}$
SI unit: meter per second (1 m/s)	SI unit: radian per second $(1 \text{ rad/s or } 1 \text{ s}^{-1})$
The equation of motion in case of the uniform translation:	The equation of motion in case of the uniform rotation:
$x = x_0 + v t$	$\theta = \theta_0 + \omega t$
The average velocity of the non-uniform translation: $v_{avg} = \frac{\Delta x}{\Delta t}$	The average angular velocity of the non-uniform rotation: $\omega_{avg} = \frac{\Delta \theta}{\Delta t}$
The instantaneous velocity : $v(t) = \lim \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$, $\Delta t \to 0$	The instantaneous angular velocity $\omega(t) = \lim \frac{\Delta \theta}{\Delta t} = \frac{\mathrm{d}\theta}{\mathrm{d}t}, \Delta t \to 0$
The constant acceleration : $a = \frac{v - v_0}{v_0}$ (SI unit 1 m/s ²)	The constant angular acceleration : $\alpha = \frac{\omega - \omega_0}{\omega}$ (SI unit 1 rad/s ²)
Dependence of the velocity <i>v</i> on time <i>t</i> : $v = v_0 + a t$	Dependence of the angular velocity ω on time t : $\omega = \omega_0 + \alpha t$
The instantaneous value of acceleration: $a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2}$	The instantaneous value of angular acceleration: $\alpha(t) = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$
The equation of motion in case of the constant acceleration:	The equation of motion in case of the constant angular acceleration:
$x = x_0 + v_0 t + \frac{a t^2}{2}$	$\theta = \theta_0 + \omega_0 t + \frac{\alpha t^2}{2}$
The case of unknown time interval: $v^2 - v_0^2 = 2 a s$	The case of unknown time interval: $\omega^2 - \omega_0^2 = 2 \alpha \varphi$
The velocity of change of acceleration: $b = \frac{a - a_0}{t}$ (m/s ³)	The velocity of change of angular acceleration: $\beta = \frac{\alpha - \alpha_0}{t}$ (s ⁻³)
Dependence of the acceleration <i>a</i> on time <i>t</i> : $a = a_0 + b t$	Dependence of the angular acceleration α on time <i>t</i> : $\alpha = \alpha_0 + \beta t$
The equation of motion in case of the constant parameter <i>b</i> :	The equation of motion in case of the constant parameter β :
$x = x_0 + v_0 t + a_0 t^2/2 + b t^3/6$	$\theta = \theta_0 + \omega_0 t + \alpha_0 t^2/2 + \beta t^3/6$

Comparison between the translation and rotation:

The intensity of the interaction is described by force F	The action of a force on the rotation of the body is described by
SI unit newton: $1 \text{ N} = 1 \text{ kg}^{+} \text{ m/s}^{2}$.	torque $\tau = \mathbf{r} \times \mathbf{F}$ (vector product). SI unit newton-meter: 1 N [·] m
The property of the body to maintain its state of the translational	The property of the body to maintain its state of the rotational motion
motion (the property of inertia) is described by the (inertial)	is described by the rotational inertia I (SI unit 1 kg m^2). The
mass <i>m</i> (SI unit 1 kg)	single particle with the mass m rotating at the distance r (radius)
	from the rotational axis has the rotational inertia $I = m r^2$.
The Newton 's 1-st law: If $\mathbf{F}_{net} = 0$, then $\mathbf{a} = 0$ and $\mathbf{v} = \text{const.}$	The Newton 's 1-st law: If $\tau_{net} = 0$, then $\alpha = 0$ and $\omega = \text{const.}$
The body is at rest or in uniform motion along the straight line.	The body is at rest or performs uniform rotation.
The Newton's 2-nd law: If $\mathbf{F}_{net} \neq 0$, then $a = \frac{1}{m} F_{net}$, $\mathbf{F}_{net} = m \mathbf{a}$	The Newton 's 2-nd law: If $\tau_{net} \neq 0$, then $\alpha = \frac{1}{I} \tau_{net}$, $\tau_{net} = I \alpha$
The body moves translationally with an acceleration which is	The body moves rotationally with an angular acceleration which is
proportional to the net force \mathbf{F}_{net} .	proportional to the net torque τ_{net} .
The Newton's 3- rd law: $F_{12} = -F_{21}$.	The Newton 's 3 -rd law: $\tau_{12} = -\tau_{21}$.
The force \mathbf{F}_{12} exerted by one body (1) onto the other one (2) is	The torque τ_{12} exerted by one body (1) onto the other one (2) is equal
equal by magnitude to the force \mathbf{F}_{21} exerted by second body (2)	by magnitude to the torque τ_{21} exerted by second body (2) on the first
on the first one (1), whereas these forces have opposite directions.	one (1), whereas these torques have opposite directions.
The linear momentum $\mathbf{p} = m \mathbf{v}$ shows us the ability of the	The angular momentum $\mathbf{L} = I \boldsymbol{\omega}$ shows us the ability of the
translationally moving body to bring other bodies into motion	rotationally moving body to bring other bodies into motion
(SI unit $1 \text{ kg} \cdot \text{m/s}$).	(SI unit 1 kg m^2/s). The single particle with the mass <i>m</i> rotating at
	the distance r (radius) from the rotational axis with the velocity v
	has the angular momentum $L = m v r$.
The net linear momentum of the isolated system is conserved:	The net angular momentum of the isolated system is conserved:
$\Sigma \mathbf{p}_i = \mathrm{const}$	$\Sigma \mathbf{L}_i = \mathrm{const}$
The fundamental equation of the translational motion (the	The fundamental equation of the rotational motion (the Newton's
Newton's second law): dp	second law); dL
$\mathbf{F} = \frac{1}{\mathrm{d}t}$	second law): $\tau \equiv \frac{1}{dt}$.
The force F causes the change of the linear momentum p .	The torque τ causes the change of the angular momentum L .
Work in case of translation: $W = \mathbf{F} \cdot \mathbf{s}$ (scalar product)	Work in case of rotation: $W = \tau \cdot \phi$ (scalar product)
Kinetic energy in case of translation: $E_{k,tr} = \frac{mv^2}{2}$	Kinetic energy in case of rotation: $E_{k,rot} = \frac{I \omega^2}{2}$