Physics toolkit

In the course books of SM358 The Quantum World you will meet terms which were defined or discussed in a recommended prerequisite physics course. This toolkit consists of a glossary that lists such terms and gives brief definitions. This should generally be enough to allow you to continue work on SM358; please note, however, that a glossary like this cannot be regarded as a substitute for studying the material in prerequisite courses.

When reading the definition given for a particular term, you may find other terms printed in italics. Such terms are themselves entries in this prerequisite glossary.
absolute temperature scale The $S I$ scale of temperature measured in kelvin (K). On this scale, the lowest conceivable temperature, absolute zero, is 0 K .
absolute zero of temperature The lowest conceivable temperature for any system. It is represented by the value 0 K on the absolute temperature scale, and corresponds to a temperature of $-273.15^{\circ} \mathrm{C}$ on the Celsius temperature scale. In classical physics, where temperature is a measure of molecular agitation, absolute zero corresponds to all particles being at rest.
acceleration The acceleration of a particle is the instantaneous rate of change of its velocity. In general, acceleration is represented by an acceleration vector. In terms of the velocity vector \mathbf{v} and the position vector \mathbf{r}, the acceleration is

$$
\mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} \mathbf{r}}{\mathrm{~d} t^{2}} .
$$

For motion confined to one dimension (the x-axis) acceleration can be represented by a single scalar, the component $a_{x}=\mathrm{d} v_{x} / \mathrm{d} t=\mathrm{d}^{2} x / \mathrm{d} t^{2}$.
alpha decay A form of radioactive decay in which the nucleus of an atom ejects an energetic alpha particle. The atomic number Z of the original nucleus falls by two and the mass number falls by four.
alpha particle The nucleus of a normal helium atom contains two protons and two neutrons. A doubly-ionized helium atom is an alpha particle, although the term is generally used in the context of alpha particles emitted from certain unstable nuclei during alpha decay.
ampere The $S I$ unit of electric current, represented by the symbol A. It is defined in such a way that, if a steady current of one ampere flows in each of two straight parallel infinitely long wires, of negligible cross section, set one metre apart in a vacuum, the magnitude of the magnetic force experienced by each wire is $2 \times 10^{-7} \mathrm{~N}$ per metre of its length. The ampere is colloquially called the amp.
amplitude The maximum deviation of an oscillation or wave from equilibrium. For a sinusoidal oscillation described by the function $x(t)=A \cos (\omega t+\phi)$, the positive constant A is called the amplitude of the oscillation. For a sinusoidal wave described by the function $u(x, t)=A \cos (k x-\omega t+\phi)$, the positive constant A is called the amplitude of the wave.
angular frequency The rate of change of the phase of an oscillation or wave.

The angular frequency ω is given by

$$
\omega=2 \pi f=\frac{2 \pi}{T}
$$

where f is the frequency and T is the period of the oscillation or wave. The $S I$ unit of angular frequency is the inverse second, s^{-1}.
angular momentum A quantity that measures a body's tendency to continue in an existing state of rotation motion. For a particle, the angular momentum \mathbf{L}, about a point O , is defined by the vector product

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}
$$

where \mathbf{r} is the displacement of the particle from the point O and \mathbf{p} is the momentum of the particle. The $S I$ unit of angular momentum is $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$.
anode The electrode through which an electric current flows into a device; if the current is carried by electrons, it is the electrode through which electrons leave the device. In a battery, the anode is the negative contact. In a vacuum electronic device (such as a cathode ray tube), the anode is given a positive charge by external means; it therefore attracts negatively-charged electrons from the partially-evacuated chamber. Compare with cathode.
antineutrino The antiparticle of a neutrino.
antiparticle Elementary particles and their antiparticles have the same mass, but opposite signs for other attributes, such as electric charge. When an elementary particle collides with its own antiparticle, the two may annihilate one another completely, producing electromagnetic radiation (usually gamma rays).
atom The smallest electrically neutral sample of an element that retains the fundamental chemical and physical identity of that element.
atomic number The number of protons in the nucleus of an atom, and hence the number of electrons in the neutral atom. The atomic number is usually denoted by the symbol Z. A chemical element is identified by its atomic number Z, which determines its chemical properties. Hydrogen, helium and lithium atoms have $Z=$ 1,2 and 3 respectively.
beta decay A form of radioactive decay in which the atomic number Z of the original nucleus changes by ± 1 and the mass number remains unchanged. There are three distinct types of beta decay. In negative beta decay (β^{-}-decay) the nucleus spontaneously emits an electron and an antineutrino. In positive beta decay (β^{+}decay), also called positron decay, the nucleus emits a positron and a neutrino. In electron capture the nucleus spontaneously captures an electron in low-lying atomic energy level and emits a neutrino; an X-ray is emitted as an electron in a higher atomic energy level falls into the vacancy left as a result of the capture.
black body An ideal absorber or electromagnetic radiation that would absorb all the radiation that was incident upon it. Such a body would also be an ideal emitter and would emit electromagnetic radiation with a spectrum that depended only on the temperature of the body.
Bohr model A semi-quantum model of atoms introduced by Niels Bohr in 1913. The model assumes (classically) that a central, positively-charged, nucleus is orbited by one or more electrons that are held in place by electrostatic forces given by Coulomb's law. It also assumes (non-classically) that the electrons are confined to

Bohr orbits in which the magnitude of the angular momentum is an integer multiple of $\hbar=h / 2 \pi$ (where h is Planck's constant). It further assumes that electrons do not emit electromagnetic radiation as long as they remain in one of the allowed orbits, but that emission (or absorption) of electromagnetic radiation does occur when an electron makes a transition which takes it from one orbit to another.
Bohr orbit Any of the paths that an electron is allowed to follow as it orbits a nucleus, according to the Bohr model of an atom. In the case of the hydrogen atom, each value of the Bohr quantum number n, where $n=1,2,3, \ldots$, corresponds to a circular orbit in which the magnitude of the angular momentum is $L=n \hbar$. The radius of such an orbit is $r_{n}=n^{2} a_{0}$ and the speed of the electron is $v_{n}=e^{2} / 4 \pi \varepsilon_{0} \hbar n$. Here, a_{0} is the Bohr radius and $\hbar=h / 2 \pi$, where h is Planck's constant.
Bohr radius The radius of the lowest circular orbit of the electron in the Bohr model of the hydrogen atom, namely

$$
a_{0}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}=5.29 \times 10^{-11} \mathrm{~m}
$$

where m_{e} and e are the mass of the electron and the magnitude of the charge on the electron, respectively, and $\hbar=h / 2 \pi$ where h is Planck's constant.

Boltzmann's constant The constant, denoted by the symbol k, that relates temperature to thermal energy. In SI units, $k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$.
cathode The electrode through which an electric current flows out of a device; if the current is carried by electrons, it is the electrode through which electrons enter the device. In a battery, the cathode is the positive contact. In a vacuum electronic device (such as a cathode ray tube), the cathode is given a negative charge by external means; it therefore repels negatively-charged electrons from the partially-evacuated chamber. Compare with anode.
cathode ray tube A partially evacuated tube in which electrons are liberated from a cathode, accelerated through a high voltage and allowed to strike a fluorescent screen.
centre of mass For an n-particle system, whose particles have masses m_{1}, \ldots, m_{n} and position vectors $\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}$ relative to an origin O, the centre of mass has position vector

$$
\mathbf{r}_{\mathrm{cm}}=\frac{m_{1} \mathbf{r}_{1}+\ldots+m_{n} \mathbf{r}_{n}}{m_{1}+\ldots+m_{n}}=\frac{\sum_{i=1}^{n} m_{i} \mathbf{r}_{i}}{M}
$$

where $M=\sum_{i=1}^{n} m_{i}$ is the total mass of the system. If the total external force acting on the system is \mathbf{F}, the acceleration of the centre of mass is $\mathbf{a}=\mathbf{F} / M$. So, if the system experiences no net external force (e.g. is isolated), its centre of mass moves with constant velocity. The centre of mass can therefore be regarded as the point at which Newton's laws for particle motion can most easily be applied to a system.
centre-of-mass frame A frame of reference used to describe the motion of a system of particles whose origin is at the centre of mass of the system.
charge See electric charge.
coherent waves Two waves are said to be coherent with one another if knowledge of the phase of one wave at a particular position and time enables the phase of the other wave to be predicted at some other position and time.
component The component of a vector along a given axis is the magnitude of the vector times the cosine of the angle between the direction of the vector and the direction the axis.

Compton effect The phenomenon in which a photon scatters from an electron and transfers some of its energy to the electron. The loss in photon energy is observed by an increase in wavelength of the scattered electromagnetic radiation, with larger scattering angles corresponding to larger wavelength shifts.
The Compton effect was historically important in establishing that photons behave like particles, exchanging energy and momentum when they collide with electrons. Relativistic energy and relativistic momentum are conserved during each collision.
conservation of angular momentum The principle that, if a system experiences no net external torque about a given point, then its total angular momentum about that point remains constant.
conservation of energy The principle that, if the total amount of energy in an isolated system remains constant, although energy may be converted from one form to another. A more informal statement of this principle is that energy may neither be created nor destroyed.
conservation of linear momentum See conservation of momentum.
conservation of momentum The principle that, if the total external force on a system is zero, the total momentum of the system is constant. Sometimes called the conservation of linear momentum.
conservative force A force with the characteristic that the work it does when its point of application moves from one point to another is independent of the route followed between those two points. This is equivalent to the requirement that the work done by the force when its point of application moves around a closed loop is equal to zero. In one dimension, a force is conservative if it depends on position only, so that the force has the form $F_{x}(x)$. In this case, we can define a potential energy function $V(x)$, which is related to the force $F_{x}(x)$ by

$$
V(x)=-\int F_{x}(x) \mathrm{d} x+\text { constant }
$$

or equivalently,

$$
F_{x}(x)=-\frac{\mathrm{d} V}{\mathrm{~d} x}
$$

Cooper pair A bound pair of electrons in quantum states with similar wave functions, but characterized by wave propagation in opposite directions and opposite spin states. Cooper pairs are formed by electrons in a superconductor at low temperatures.
coulomb The SI unit of electric charge, represented by the symbol C. A coulomb is the charge transferred by a current of one ampere flowing for one second. Thus, $1 \mathrm{C}=1 \mathrm{As}$.
Coulomb's law See Coulomb's law of electrostatic force.
Coulomb's law of electrostatic force A law that describes the electrostatic force on a stationary charged particle due to another stationary charged particle, located some distance away, in a vacuum. Coulomb's law can be represented mathematically
by the equation

$$
\mathbf{F}_{12}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r_{12}^{2}} \widehat{\mathbf{r}}_{12}
$$

where \mathbf{F}_{12} is the force on particle $1, q_{1}$ and q_{2} are the charges, r_{12} is the distance between the particles, ϵ_{0} is the permittivity of free space and $\widehat{\mathbf{r}}_{12}$ is a unit vector directed towards particle 1 from particle 2 . Thus, $\widehat{\mathbf{r}}_{12}=\mathbf{r}_{12} / r_{12}$, where \mathbf{r}_{12} is the displacement of the particle 1 relative to particle 2. In agreement with Newton's third law, this law implies that there is also a force $\mathbf{F}_{21}=-\mathbf{F}_{12}$ acting on particle 2. Coulomb's law is consistent with the rule that like charges repel and unlike charges attract.
current See electric current.
cycle Part of an oscillation or wave that occupies exactly one period.
decay See nuclear decay.
density The density at a given point is the mass per unit volume in the immediate vicinity of that point.
deuterium atom An isotope of hydrogen with mass number 2. A deuterium atom has a nucleus that consists of a bound state of a proton and a neutron (a deuteron) with a single electron outside the nucleus.
deuteron A bound state of a proton and a neutron. A deuteron is the nucleus of a deuterium atom.
diatomic A term used to describe a molecule consisting of two atoms bound together by forces.
diffraction The spreading of a wave that occurs when it passes through an aperture or around an obstacle. Diffraction is caused by the interference of waves taking different routes. Classical examples include the diffraction of water waves, sound waves and classical light waves. In quantum mechanics, the wave could be the wave function that describes an electron propagating according to Schrödinger's equation.
diffraction pattern The intensity pattern of a wave that has been diffracted by passing through an aperture or around an obstacle. The diffraction arises as a result of interference, so the diffraction pattern generally displays interference maxima and interference minima.
displacement The change in position in going from the one point to another. The magnitude of the displacement is equal to the distance between the two points. The direction of the displacement is the direction of the line from the first point to the second. If a particle moves in two- or three-dimensional space, its displacement is represented by a displacement vector.
electrical conductivity A measure of the ease with which a material conducts an electric current. If a slab of the material of length l and cross-sectional area A has a potential difference V maintained across its ends, the current flowing through it is

$$
i=\frac{\sigma A V}{l}
$$

where σ is the electrical conductivity.
electrical resistivity The reciprocal of electrical conductivity.
electric charge A fundamental property of matter that determines the electric and magnetic interactions of particles. They are two types of charge: positive and negative. Protons are positively charged (with charge e) and electrons are negatively charged (with charge $-e$). The SI unit of charge is in the coulomb (C).
electric current The electric current flowing along a wire is the rate at which electric charge flows through a fixed plane perpendicular to the axis of the wire. If the current is carried by electrons (which are negatively-charged), the current is in the opposite direction to the direction of flow of electrons.
electric field A field which determines the electric force on a charged particle placed at any given point. The electric field at a point P is a vector quantity equal to the electric force per unit charge experienced by a small test charge placed at P .
electric force The force experienced by a charged particle or charged body due to an electric field.
electrode A conducting plate at which charged particles (usually electrons) are collected or emitted in a cell, battery, vacuum electronic device, etc. The electric current enters the device via the anode and leaves it via the cathode.
electromagnetic radiation Electromagnetic waves, ranging from gamma rays at short wavelengths through X-rays, ultraviolet radiation, visible light, infrared radiation and microwaves to radio waves at long wavelengths.
electromagnetic wave A transverse wave in which an electric field and a magnetic field oscillate in phase with one another. The simplest type of electromagnetic wave is monochromatic; such a wave is sinusoidal, with a single wavelength λ, frequency f and speed $c=f \lambda$ which, in a vacuum, is equal to the speed of light. Another term for electromagnetic radiation.
electron A negatively-charged particle currently regarded as structureless, with about one two-thousandth the mass of a hydrogen atom. The carrier of electric current in metallic conductors.
electron capture see beta decay.
electronvolt The energy gained when an electron is accelerated through a potential difference of one volt. An electronvolt is represented by the symbol eV , and is equal to $1.60 \times 10^{-19} \mathrm{~J}$. According to the conventional rules for $S I$ prefixes, $1 \mathrm{meV}=10^{-3} \mathrm{eV}$, $1 \mathrm{keV}=10^{3} \mathrm{eV}, 1 \mathrm{MeV}=10^{6} \mathrm{eV}$ and $1 \mathrm{GeV}=10^{9} \mathrm{eV}$. The units $\mathrm{meV}, \mathrm{eV}, \mathrm{MeV}$ and GeV are convenient for discussing molecular vibrations, electronic transitions, nuclear physics and high-energy particle physics, respectively.
electrostatic force The force between two stationary charged particles. For particles separated by a vacuum, this force is described by Coulomb's law.
electrostatic potential The electrostatic potential at a given point, due to a given arrangement of stationary electric charges is the electrostatic potential energy per unit charge at the given point.
element Traditionally, a substance which cannot be divided by chemical means, heating or the passage of an electric current. More specifically, a sample of any given element consists of matter entirely composed of atoms with the same number of protons in their nuclei.
elementary particle A piece of matter that is of sub-nuclear size. Such particles include protons and neutrons, as well as electrons and quarks. They may or may not
be truly fundamental constituents of matter.
energy The property of a system that measures its capacity for doing work. The $S I$ unit of energy is the joule, represented by the symbol J, where $1 \mathrm{~J}=1 \mathrm{Nm}=$ $1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$.
event An ideal physical occurrence that occupies a point in space and occurs at an instant in time. Real processes, occurring in a small region of space, during a brief interval of time, can be modelled as events.
external force A force acting on a system, caused by agencies outside the system.
field A quantity which, at a given instant, has definite values throughout a continuous region of space. Examples include gravitational fields, electric fields and magnetic fields. Many fields determine the forces acting on particles, but this need not be so (e.g. a temperature field).
force Informally, this is the amount of 'push' or 'pull' exerted on a particle which, if unopposed, causes it to depart from the uniform motion predicted by Newton's first law. It is, therefore, that which causes (or tends to cause) acceleration. The relationship between the acceleration a of a particle of mass m and the total force F acting on the particle is

$$
\mathbf{F}=m \mathbf{a},
$$

which is Newton's second law. The SI unit of force is the newton, represented by the symbol N , where $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$.
force constant The positive constant k, that appears in Hooke's law $F_{x}=-k x$ for a simple harmonic oscillator, and in the expression for the potential energy function of a harmonic oscillator, $V(x)=\frac{1}{2} k x^{2}$.
frame of reference A set of coordinate axes and synchronized clocks, that makes it possible to specify uniquely the location in space and time of any given event.
free particle A particle that is subject to no forces, and for which the potential energy is a constant independent of position (usually set equal to zero).
frequency The number of cycles per unit time of an oscillation or wave. The frequency f is related to the period T by $f=1 / T$. The $S I$ unit of frequency is the hertz $\left(1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}\right)$.
fusion See nuclear fusion.
gamma ray Electromagnetic radiation with a wavelength shorter than $10^{-11} \mathrm{~m}$, or equivalently a frequency greater than about $3 \times 10^{19} \mathrm{~Hz}$. A common source of such radiation is nuclei which undergo radioactive decay.
gluon Any member of the family of eight elementary particles with spin-1 that are currently believed to be responsible for mediating the strong interaction.
harmonic motion See simple harmonic motion.
harmonic oscillator See simple harmonic oscillator.
helium atom An atom with atomic number 2 (and therefore with two protons in its nucleus). Helium atoms generally contain one or two neutrons, and two electrons outside the nucleus.
hertz The SI unit of frequency, represented by the symbol Hz. A frequency of 1 Hz is equivalent to one cycle per second, so $1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$.

Hooke's law The force F_{x} on a particle in one dimension is said to obey Hooke's law if it is a restoring force (always acting towards the equilibrium position) and is proportional to the displacement of the particle from equilibrium. So we can write

$$
F_{x}=-k x,
$$

where x is the displacement from equilibrium and the proportionality constant k is called the force constant. In classical physics, such a force leads to simple harmonic motion.
hydrogen atom An atom with atomic number 1 (and therefore with one proton in its nucleus) and a single electron outside the nucleus. Hydrogen molecules consist of two hydrogen atoms bound together.
inertial frame of reference A frame of reference set up and moving in such a way that Newton's first law is true for all free particles. The laws of physics (including those of Newtonian mechanics and quantum mechanics) are normally expressed in terms of observations made in inertial frames of reference.
infrared radiation Electromagnetic radiation with a wavelength between about $7 \times 10^{-7} \mathrm{~m}$ and $1 \times 10^{-3} \mathrm{~m}$, or equivalently a frequency between about $4 \times 10^{14} \mathrm{~Hz}$ and $3 \times 10^{11} \mathrm{~Hz}$.
intensity The intensity of a classical wave is the amount of energy transported by the wave per unit time per unit area perpendicular to the direction of wave propagation. The intensity is proportional to the square of the amplitude of the wave. If a point source of waves radiates energy equally in all directions, the intensity of the waves is proportional to the inverse square of the distance from the source. The $S I$ unit of intensity is the watt per square metre (Wm^{-2}).
interference The phenomenon arising from the superposition of two or more coherent waves, resulting in a pattern of interference maxima and interference minima.
interference maxima Features of interference patterns produced when two or more coherent waves interfere with one another. Interference maxima occur at points where the contributing waves reinforce one another, leading to a local maximum in the intensity of the wave (constructive interference).
interference minima Features of interference patterns produced when two or more coherent waves interfere with one another. Interference minima occur at points where the contributing waves cancel one another, leading to a local minimum in the intensity of the wave (destructive interference).
interference pattern A pattern of peaks and troughs in intensity that occurs when coherent waves from a spatially extended source (or more than one source) are allowed to interfere with one another.
ion An electrically-charged atom formed when a neutral atom loses one or more electrons (a positive ion) or gains one or more electrons (a negative ion).
ionic crystal A crystal composed mainly of negative and positive ions held together by the attractive electrostatic force between ions of opposite sign. A well known example is the crystal of common salt, NaCl .
ionization The process in which a neutral atom loses one or more electrons to produce a positive ion and one or more unbound electrons.
isolated system A system which is not acted upon by any external forces and which exchanges no energy or matter with the rest of the Universe.
isotope Different nuclei with the same number of protons and different numbers of neutrons (and therefore the same atomic number Z but different mass numbers $A)$ are called isotopes of the element characterized by Z. The usual symbol for an isotope is ${ }^{\mathrm{A}} \mathrm{Sy}$, where Sy is the chemical symbol for the element and A is the mass number. Since Sy determines Z, the fuller notation ${ }_{Z}^{A} S y$ is strictly redundant, but may be helpful for elements for which Z is not widely remembered. The full specification ${ }_{Z} \mathrm{~S}_{\mathrm{N}}$ is sometimes given, where N is the number of neutrons in the nucleus. For example, the isotope of silicon with $A=27$ and $Z=14$ can be written as ${ }_{14}^{27} \mathrm{Si}_{13}$ or ${ }_{14}^{27} \mathrm{Si}$ or ${ }^{27} \mathrm{Si}$. Less formally, this isotope is referred to as silicon- 27 .
joule The SI unit of work and energy, represented by the symbol J. One joule is the work done on a body by a force of magnitude one newton when the body moves one metre in the direction of the force. So $1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}=1 \mathrm{Nm}$.
kelvin The $S I$ unit of temperature represented by the symbol K. A temperature difference of one kelvin $(1 \mathrm{~K})$ is equivalent to a temperature difference of one degree Celsius $\left(1^{\circ} \mathrm{C}\right)$, but the two scales have different origins. See absolute temperature scale.
kinetic energy Energy due to motion. The kinetic energy of a particle is given by $\frac{1}{2} m v^{2}$, where m is the particle's mass and v its speed.
laser A device which when stimulated with incident electromagnetic radiation produces an intense coherent source of light in the form of a narrow beam. The word 'laser' is an acronym for Light Amplification by the Stimulated Emission of Radiation.
lepton One of the major families of elementary particles, consisting of six particles and their antiparticles. Leptons are currently believed to be truly elementary particles. They participate in the weak interaction, but not in the strong interaction.
Leptons are classified into three generations: electron and electron neutrino; muon and muon neutrino; tauon and tauon neutrino and their corresponding antiparticles.
light This term normally means visible light. Some authors use the term to mean any type of electromagnetic radiation.
longitudinal wave A wave composed of oscillations that take place in a direction parallel to the direction of propagation of the wave. Contrast with transverse wave.
magnetic field A field which determines the magnetic force on a charged particle moving through a given point. The magnetic field at a point P is a vector quantity B such that the magnetic force on a particle of charge q, passing through P with velocity \mathbf{v}, is given by the vector product

$$
\mathbf{F}=q(\mathbf{v} \times \mathbf{B}) .
$$

magnetic force A velocity-dependent force experienced by a particle with an electric charge moving in a magnetic field. The force is perpendicular to both the velocity of the particle and the magnetic field.
magnitude The magnitude of a scalar Q is a non-negative quantity $|Q|$ describing the size of Q, irrespective of its sign. The magnitude of a vector a is a non-negative quantity $|\mathbf{a}|$, describing the size of \mathbf{a}, irrespective of its direction. The magnitude of a vector a is usually written as a, omitting both the bold print and the modulus signs.
mass A quantity that represents the amount of matter in an object and is inde-
pendent of the object's position in the Universe. It is proportional to the weight of the object (which is dependent on the object's position in the Universe), and occurs as a constant in Newton's second law. The SI unit of mass is the kilogram (kg).
mass number The total number of protons and neutrons in a nucleus, $A=Z+N$, where Z is the atomic number and N is the number of neutrons.
matter A general term for material substances, irrespective of their form.
meson A term used to describe any elementary particle that participates in the strong interaction and has zero or integer spin. Each meson is a combination of a quark and antiquark.
microwave Electromagnetic radiation with a wavelength between about $1 \times 10^{-3} \mathrm{~m}$ and $1 \times 10^{-1} \mathrm{~m}$, or equivalently a frequency between about $3 \times 10^{11} \mathrm{~Hz}$ and $3 \times 10^{9} \mathrm{~Hz}$.
molecule The smallest part of a given pure substance that retains the chemical identity of that substance. From a microscopic point of view, a molecule is a particular group of atoms bound together in a given way.
momentum A quantity useful in various situations as a measure of the tendency of a body to continue in its existing state of translational motion. In Newtonian mechanics, for a particle of mass m travelling with velocity \mathbf{v}, the momentum is

$$
\mathbf{p}=m \mathbf{v}
$$

The $S I$ unit of momentum is $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$. Also called linear momentum. See also angular momentum.
monochromatic wave A wave of a single frequency.
neutrino A very weakly-interacting lepton. Neutrinos exist in three types: the electron neutrino, the muon neutrino and the tauon neutrino.
neutron An electrically neutral elementary particle which is a constituent of atomic nuclei, having a mass slightly greater than that of a proton. The neutron is stable within an atomic nucleus, but is unstable in a vacuum where it has a half-life of 914 s .
neutron star A highly compact stellar object composed of matter rich in neutrons. Neutron stars have a typical density of order $10^{15} \mathrm{~kg} \mathrm{~m}^{-3}$ (about 10^{12} times the density of water). Measured neutron star masses are typically 1.4 times the mass of the Sun and their radii are thought to be about 8 to 10 km . Neutron stars are formed when massive stars collapse under their own weight.
newton The $S I$ unit of force, represented by the symbol N. A total force of magnitude 1 N will cause a particle of mass 1 kg to accelerate at $1 \mathrm{~m} \mathrm{~s}^{-2}$ in the direction of the force. So, $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m}^{-2}$.

Newtonian mechanics A branch of physics which attempts to explain the motion of objects in terms of the forces acting on them. It is based on Newton's laws and incorporates other important principles, such as the law of conservation of energy.
Newton's first law A law stating that a body remains at rest or in a state of uniform motion unless it is acted on by an unbalanced force.
Newton's laws A set of three laws: Newton's first law, Newton's second law and Newton's third law.

Newton's second law A law stating that an unbalanced force acting on a body of finite fixed mass will cause that body to accelerate in the direction of the force
and that the force \mathbf{F} is equal to the product of the mass m and the acceleration \mathbf{a}, namely

$$
\mathbf{F}=m \mathbf{a} .
$$

For a system of particles, or an extended body, the law implies that the total external force is equal to the total mass times the acceleration of the centre of mass. Newton's second law may be expressed in terms of momentum \mathbf{p} as follows. The total force acting on a body is equal to the rate of charge of the body's momentum:

$$
\mathbf{F}=\frac{\mathrm{d} \mathbf{p}}{\mathrm{~d} t}
$$

For a system of particles or an extended body this implies that the total external force is equal to the rate of change of the total momentum.
Newton's third law A law stating that if body A exerts a force on body B, then body B exerts a force on body A, and that these two forces are equal in magnitude but act in opposite directions. The law implies that

$$
\mathbf{F}_{A B}=-\mathbf{F}_{B A}
$$

where $\mathbf{F}_{A B}$ is the force on A due to B , and $\mathbf{F}_{B A}$ is the force on B due to A .
node A fixed point at which there is permanently no disturbance in a standing wave (although end-points of the disturbance are not always counted as nodes).
nuclear decay A general process whereby an (unstable) elementary particle can spontaneously change into two or more other elementary particles.
nuclear fusion A process in which two nuclei 'fuse' together to form a heavier nucleus. If the nucleus produced has mass number $A \leq 56$ (e.g. ${ }^{56} \mathrm{Fe}$) or thereabouts, the process is likely to release energy. Fusion is crucial in stars for both energy release and for the production of the lighter elements, from helium up to iron, from primordial hydrogen. Fusion reactions are also the basis for the energy released in hydrogen bombs.
nuclei The plural of nucleus.
nucleus The positively-charged, very compact, central part of an atom. The nucleus is some 10^{4} times smaller in radius than an atom, and contains almost all the mass, the protons and neutrons of which it is composed being some 2000 times more massive than electrons. The number of positively-charged protons, the atomic number, Z, determines the number of electrons in a neutral atom and hence the chemical properties of the element that is characterized by Z.
nuclide A species of atomic nucleus that is characterized by the number of protons and neutrons that it contains. Sometimes called an isotope.
oscillation A to-and fro motion, also called a vibration.
particle (a) In the context of classical physics, a particle is an object that has no spatial extent and can therefore be thought of as existing at a single point in space. It has no size, shape or internal motion though it may have intrinsic properties such as mass and charge, as well as position, velocity and acceleration.
(b) In the context of particle physics, a particle (also known as an elementary particle in this context) is a piece of matter that is of sub-nuclear size. Such particles
include protons, neutrons and electrons, and may or may not be truly fundamental constituents of matter.
period The time T taken for one complete cycle of an oscillation or wave; the reciprocal of the frequency, $T=1 / f$.
permittivity of free space The fundamental constant, denoted by ε_{0}, that appears in Coulomb's law and plays a role in determining the magnitude of the electrostatic force between two charged particles separated by a vacuum. In $S I$ units $\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$.
phase For a sinusoidal oscillation $x(t)=A \cos (\omega t+\phi)$, where A is positive, the phase is the argument of the cosine, i.e. $\omega t+\phi$.
For a sinusoidal wave $u(x, t)=A \cos (k x-\omega t+\phi)$, where A is positive, the phase is the argument of the cosine, i.e. $k x-\omega t+\phi$. Do not confuse the phase with the phase constant.
phase constant For a sinusoidal oscillation $x(t)=A \cos (\omega t+\phi)$, where A is positive, the phase constant is ϕ.

For a sinusoidal wave $u(x, t)=A \cos (k x-\omega t+\phi)$, where A is positive, the phase constant is ϕ. Do not confuse the phase constant with the phase.
photoelectric effect The effect whereby electrons are emitted from matter (usually from a metallic electrode) when electromagnetic radiation of sufficiently high frequency is incident on it.
photon A packet of electromagnetic radiation. For radiation in free space of frequency f and wavelength λ, each photon has energy $E=h f$ and momentum $p=h / \lambda$, where h is Planck's constant.

Planck-Einstein formula The formula

$$
E=h f
$$

that relates the energy E of a photon of electromagnetic radiation to the frequency f of that radiation, where h is Planck's constant.
Planck's constant The constant $h=6.63 \times 10^{-34} \mathrm{~J}$ s introduced by Max Planck to explain the spectrum of electromagnetic radiation emitted by black bodies. It also appears In Einstein's theory of the photoelectric effect and in the Planck-Einstein formula. In fact, it appears in practically every equation of quantum mechanics but never in those of classical physics.
plane polarized wave See polarization.
plane wave A wave of constant frequency for which points of constant phase lie in planes perpendicular to the direction of propagation of the wave.
polarization The property of a transverse wave that implies the existence of a restriction on the direction of the transverse vibrations. For example, for a plane polarized wave, the transverse vibrations occur in the same plane at all points on the path of the wave. In such cases the plane containing the direction of the oscillating variable and the direction of propagation of the wave is called the plane of polarization of the wave.
position vector A vector that defines the position of a particle in space.
positron A positively-charged elementary particle, the antiparticle of an electron.
positron decay See beta decay.
potential Often a term used for electrostatic potential.
potential difference A term used for the difference in electrostatic potential between two points.
potential energy The potential energy of a particle is its ability to do work due to its position. In one dimension, the potential energy function $V(x)$ is given in terms of the conservative force $F_{x}(x)$ acting on the particle by

$$
V(x)=-\int F_{x}(x) \mathrm{d} x+\text { constant }
$$

or equivalently,

$$
F_{x}(x)=-\frac{\mathrm{d} V}{\mathrm{~d} x} .
$$

The point at which the potential energy function is zero can be chosen to be any convenient point.
proton A positively-charged elementary particle which is a constituent of atomic nuclei. The mass of a proton is slightly less that of a neutron and is almost 2000 times greater than that of an electron. The charge of a proton is positive and has the same magnitude as that of a negatively-charged electron.
quark Any of the charged elementary particles that are currently believed to be fundamental constituents of protons and neutrons. Quarks are not expected to be observed as isolated particles. Six kinds of quark are currently known. The six types are up (u), down (d), charm (c), strange (s), top (t) and bottom (b). The quarks all have spin $\frac{1}{2}$ and a charge that is a multiple of $\frac{1}{3} e$.
radiation A term used either as an abbreviation for electromagnetic radiation or when referring to particles emanating from a source (particularly those resulting from the radioactive decay of nuclei).
radiative transition A process in which a quantum system (such as an atom) undergoes a transition from one energy level to another by the emission or absorption of electromagnetic radiation (i.e. a photon).
radioactive decay See nuclear decay.
radioactivity The phenomenon whereby an unstable nucleus spontaneously decays and, as a consequence, emits particles or electromagnetic radiation.
radio wave Electromagnetic radiation with a wavelength greater than around $10^{-1} \mathrm{~m}$, or equivalently a frequency less than about $3 \times 10^{9} \mathrm{~Hz}$.
reduced mass A mass used to characterize a two-particle system. If the two particles have masses m_{1} and m_{2}, the reduced mass of the two-particle system is

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

The relative motion of the two particles can be analysed by considering a single particle with a mass equal to the reduced mass, subject to a potential energy function.
restoring force A force that acts in a direction which tends to restore a particle towards its equilibrium position.
rotational motion Motion in which all the particles of a system move at the same angular rate in circular paths, and the centres of all the circles are on a single line called the axis of rotation. Contrast with translational motion.

Rutherford model of the atom The atomic model put forward by Ernest Rutherford, in which the electrons in the atom are assumed to orbit outside a tiny core or nucleus which contains all the positive charge and almost all the mass of the atom.
scalar A quantity that is completely specified by a single number, or by a number times an appropriate unit of measurement. Contrast with vector.
selection rules Rules that govern whether particular radiative transitions are allowed or (to a first approximation at least) forbidden.
semiconductor Material of electrical conductivity intermediate between a good conductor (such as a metal) and an insulator. Examples are silicon, germanium and gallium.

SI An internationally agreed system of units of measurement. The system employs seven base units, including the kilogram (abbreviated to kg), the metre (abbreviated to m), the second (abbreviated to s), the ampere (abbreviated to A) and the kelvin (abbreviated to K). It also includes a number of derived units obtained by combining base units in various ways. The system uses certain standard prefixes such as kilo $=10^{3}$, mega $=10^{6}$, giga $=10^{9}$, tera $=10^{12}$, milli $=10^{-3}$, micro $=10^{-6}$, nano $=10^{-9}$ and pico $=10^{-12}$. It also recognizes a number of standard symbols and abbreviations. SI itself is one of these symbols and stands for Système International.
simple harmonic motion A particular form of oscillation about a specified equilibrium position, characterized by the fact that the acceleration is always directed towards the equilibrium position and is proportional to the displacement from that point. In one dimension, any simple harmonic motion may be described by a differential equation of the form

$$
\frac{d^{2} x}{d t^{2}}+\omega_{0}^{2} x=0
$$

which has the general solution

$$
x(t)=A \cos \left(\omega_{0} t+\phi\right),
$$

where A is the amplitude of the motion, ω_{0} is the angular frequency and ϕ is the phase constant of the motion.
simple harmonic oscillator A particle or system that performs simple harmonic motion.
solid state A term used to describe the field of physics in which the properties of solids are studied. It is also used to describe any electronic circuit or device containing solid-based (usually silicon) semiconductors.
spectra The plural of spectrum.
spectral lines Narrow lines (corresponding to narrow ranges of wavelength or frequency) seen in the spectra of substances and characteristic of those substances. Each spectral line results from a radiative transition and has a frequency $f=\Delta E / h$, where ΔE is the difference in energy between two states in the system and h is Planck's constant.
spectrum Any particular pattern of electromagnetic radiation, often expressed as a function of intensity versus wavelength, frequency or a related quantity such as photon energy. Many spectra consist of spectral lines, observed when electromagnetic radiation is emitted or absorbed by a quantum system. The spectrum can provide an identifiable 'fingerprint' of the system.
speed The magnitude of velocity.
spin A type of angular momentum possessed as an intrinsic property of by certain particles. Spin in often characterized by the spin quantum number s, which is equal to $\frac{1}{2}$ for electrons, protons, neutrons and quarks.
standing wave A wave that oscillates without travelling through space. All points in the disturbance that constitutes the wave oscillate in phase, with the same frequency but with different amplitudes. The fixed points of zero disturbance are called the nodes of the wave (although end-points of the disturbance are not always counted as nodes).
A familiar example is a standing wave on a string stretched between fixed endpoints. In such a case the standing waves that may be excited are restricted by the requirement that the distance between the fixed ends of the string must be equal to a whole number of half wavelengths.

A standing wave may be regarded as the sum of two travelling waves, propagating in opposite directions.
strong force See strong interaction.
strong interaction A very short-range attractive force (also called the strong force or the strong nuclear force, that acts between protons and neutrons. It does not act on electrons and is almost independent of electric charge. The strong interaction is responsible for holding the nucleus together, despite the mutual electrostatic repulsion of its constituent protons.
strong nuclear force See strong interaction.
superconductivity The phenomenon exhibited by a number of materials, whereby, at a sufficiently low temperature, the electrical resistivity becomes zero (i.e. the electrical conductivity becomes infinitely large) and magnetic flux is expelled.
superconductor See superconductivity
superposition In the context of waves, the adding of two or more wave disturbances. More generally, given a set of n functions $\Psi_{1}, \Psi_{2}, \ldots \Psi_{n}$, any expression of the form

$$
\Psi=c_{1} \Psi_{1}+c_{2} \Psi_{2}+\cdots c_{n} \Psi_{n}
$$

where $c_{1}, c_{2}, \ldots c_{n}$ are constants, is said to be a linear superposition of Ψ_{1}, Ψ_{2}, $\ldots \Psi_{n}$.
system The portion of the Universe chosen as the subject of a scientific investigation. See also isolated system.
thermal energy A term for the sum of the kinetic energies and mutual potential energy of all basic particles (e.g. molecules) in a system. The typical thermal energy of a molecule in a gas that is in thermal equilibrium at temperature T is approximately equal to $k T$, where k is Boltzmann's constant.
torque The torque of a force \mathbf{F} about a fixed point O measures the turning effect
of the force about the fixed point. It is given by the vector product

$$
\boldsymbol{\Gamma}=\mathbf{r} \times \mathbf{F},
$$

where \mathbf{r} is the displacement of the point of action of the force from the fixed point O .
total (mechanical) energy The total (mechanical) energy of a particle is the sum of its kinetic energy and its potential energy.
trajectory The trajectory of a particle is the particle's path as it moves through space.
translational motion Motion in which every particle of a system moves at the same rate in the same direction. Contrast with rotational motion.
transverse wave A wave composed of oscillations that take place in a direction perpendicular to the direction of propagation of the wave. Contrast with longitudinal wave.
travelling wave A wave that propagates from one place to another. One example of such a wave is represented by the function $u(x, t)=A \cos (k x-\omega t+\phi)$, where $A>0$ is the amplitude of the wave, k is the wave number, ω is the angular frequency and ϕ is the phase constant. The quantity $k x-\omega t+\phi$ is the phase of the wave.
tunnelling The quantum-mechanical phenomenon whereby a particle confined in a finite region of space penetrates some distance into a classically-forbidden region (where the particle's potential energy is more than the total energy). If this classically-forbidden region is of finite width, it is possible for the particle to tunnel through the classically-forbidden region and be detected in some other classicallyallowed region where its potential energy is again less than its total energy.
ultraviolet radiation Electromagnetic radiation with wavelength between about $1 \times 10^{-8} \mathrm{~m}$ and $4 \times 10^{-7} \mathrm{~m}$, or equivalently with frequency between about $3 \times 10^{16} \mathrm{~Hz}$ and $8 \times 10^{14} \mathrm{~Hz}$.
uniform motion A type of motion in which a particle travels with constant velocity in a straight line and does not accelerate.
unit vector A vector of unit magnitude in a given direction. A unit vector is dimensionless (it has no units).
vector A quantity that has a definite magnitude and a definite direction in space. Vectors can be specified by giving their components in a given coordinate system
velocity The velocity of a particle is the instantaneous rate of change of its position. In general, velocity is represented by a velocity vector. In terms of the position vector \mathbf{r}, the velocity is

$$
\mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}
$$

For motion confined to one dimension (the x-axis), velocity can be represented by a single scalar, the component $v_{x}=\mathrm{d} x / \mathrm{d} t$. The magnitude of velocity is called speed.
vibrational motion A to-and-fro motion. See also oscillation.
visible light Electromagnetic radiation with wavelength between about $4 \times 10^{-7} \mathrm{~m}$ (400 nm , violet) and $7 \times 10^{-7} \mathrm{~m}(700 \mathrm{~nm}$, red), or equivalently with frequency between about $8 \times 10^{14} \mathrm{~Hz}$ and $4 \times 10^{14} \mathrm{~Hz}$.
volt The SI unit of electrostatic potential, potential difference or emf, represented by the symbol V. If an electric charge of one coulomb has its electric potential increased by one volt, its potential energy increases by one joule, so that $1 \mathrm{~V}=1 \mathrm{~J} \mathrm{C}^{-1}$.
voltage Any quantity, such as electrostatic potential, potential difference or emf, that can be measured in volts.
watt The SI unit of the rate at which work is done or energy transferred, represented by the symbol W . One watt is defined by $1 \mathrm{~W}=1 \mathrm{~J} \mathrm{~s}^{-1}$.
wave A periodic disturbance that can convey energy from one point to another. If the wave travels through a material medium, no particle in the medium is permanently displaced by passage of the wave. Waves may be standing or travelling. Some waves may be transverse or longitudinal. Waves may also be characterized by their frequency, wavelength and direction of propagation. Transverse waves may also be characterized by their polarization.
wavelength The spatial separation λ, measured along the direction of propagation, of successive points in a wave that differ in phase by 2π at any fixed time t. More crudely, the distance between successive peaks of the wave.
wave number The quantity $k=2 \pi / \lambda$, where λ is the wavelength of a wave.
weak interaction A very short-range force that is responsible (among other things) for beta decay.
white dwarf star A compact stellar object with a mass similar to that of the Sun, which, following a fuel shortage, has collapsed to a size similar to that of the Earth. Consequently the average density of the object is very high, roughly a million times that of the Sun.
work If a constant force \mathbf{F} acts on a particle as it moves through a displacement \mathbf{s}, the work done by the force on the particle is $\mathbf{F} \cdot \mathbf{s}$. For a conservative force the work done depends only on the initial and final positions of the particle.
X-rays Electromagnetic radiation with wavelength between $1 \times 10^{-8} \mathrm{~m}$ and $1 \times$ $10^{-11} \mathrm{~m}$, or equivalently frequency between about $3 \times 10^{16} \mathrm{~Hz}$ and $3 \times 10^{19} \mathrm{~Hz}$
zero of potential energy A point at which the potential energy of a particle is set equal to zero.

