Physical quantities

Note: Abbreviations of the scalar quantities are presented in italic (l, s, x...), abbreviations of the vector quantities are presented in bold (v, a, F..)

The natural phenomenon or property → the human-derived imagination of it	Physical quantity describing this	Abbreviation of the quantity	Measuring unit in the SI system of units	Abbreviation of the unit
The property of the body to differ from other bodies by size (to be $longer$ or $shorter$, $higher$ or $lower$) \rightarrow a human imagination of space	length, path length	l s	meter	1 m
The location of the body during the translational motion \rightarrow a human imagination of the system of coordinates (the reference frame)	coordinate displacement	x s	meter	1 m
The state of translational motion of the body \rightarrow a human wish to compare various translational motions	speed velocity	<i>v</i> v	meter per second	1 m/s
Difference of motions \rightarrow comparison of the motions \rightarrow a human imagination of the duration of the processes	time time interval	t Δt	second	1 s
The change of the state of translational motion of the body \rightarrow a human imagination of the speed of the velocity change	acceleration	a	meter per squared second	1 m/s ²
The property of the body to maintain its state or status of the translational motion (the property of inertia)	(inertial) mass	m	kilogram	1 kg
The property of the substance to contain some mass in the unit of volume	density	ρ [the Greek letter rho]	kilogram per cubic meter	1 kg/m ³
The strength or intensity of the interaction between the bodies at the translational motion \rightarrow a human wish to compare interactions between various bodies in the case of translational motion	force	F	newton	1 N = 1 kg m/s2
The ability of the substance or the field to act with some force on the unit area of a base or a wall of the container	pressure	p	newton per square meter = pascal	$1 \text{ N/m}^2 = 1 \text{ Pa}$
The ability of the translationally moving body to bring other bodies to motion (the quantity of the translational motion)	linear momentum	p	kilogram times meter per second	1 kg m/s
The property of the body to participate in the gravitational interaction	(heavy) mass *)	m_h	kilogram	1 kg
The property of the body to participate in the electromagnetic interaction	electric charge	q	coulomb	1 C

The position of the body at the rotational motion \rightarrow a human need to describe the difference between various positions of the rotating body with respect to the axis of rotation	coordinate angle	θ [the Greek letter <i>theta</i>]	radian	1 rad
The state of rotational motion of the body \rightarrow a human wish to compare various rotational motions	angular velocity	ω [the Greek letter <i>omega</i>]	radian per second	1 rad/s or 1 s^{-1}
The change of the state of rotational motion of the body \rightarrow a human imagination of the speed of the angular velocity change	angular acceleration	α [the Greek letter <i>alpha</i>]	radian per squared second	1 rad/s ²
The strength or intensity of the interaction between the bodies at the rotational motion \rightarrow a human wish to describe the action of a force on the rotational motion of the body.	torque	τ [the Greek letter tau]	newton times meter or newton-meter	1 N·m
The ability of the rotationally moving body to bring other bodies in motion (the quantity of the rotational motion)	angular momentum	L	kilogram times squared meter per second	$1 \text{ kg m}^2/\text{s}$
The property of the body to maintain its state of the rotational motion (the property of inertia of the rotation)	rotational inertia	I	kilogram times squared meter	1 kg m^2
Process changing the state or status of the bodies, the change itself (displacement) and the effort needed for this change (force).	work	W (US, UK) A (DE, RU)	joule	1 J
The ability of the body to change the situation (to perform work) deriving from the motional state of the body.	kinetic energy	E_k	joule	1 J
The ability of the body to change the situation (to perform work) deriving from the position of the body with respect to the other bodies and interactions with them	potential energy	E_p	joule	1 J
The ability to change the situation (to perform work) caused only by the existence of the body or field	rest energy	E_r	joule	1 J
Speed of the process (work per time unit) required for the change of the situation	power	P	watt	1 W = 1 J/s

Note: *) Inertial and heavy masses are defined to be equal and are both measured in **kilograms**.