Physical quantities in the electricity and magnetism

Note: Abbreviations of the scalar quantities are presented in *italic* (q, I, U..), abbreviations of the vector quantities are presented in **bold** (E, B, ..)

The natural phenomenon or property \rightarrow the human-derived imagination of it	Physical quantity describing	Abbreviation and definition formula	Measuring unit in the SI system of	Abbreviation and definition of the unit
	it		units	
The property of the body to participate in the electromagnetic interaction.	charge	<i>q</i> , <i>Q</i> basic quantity	coulomb	$1C = 1A \cdot 1s$
The state of directed motion of the charged particles \rightarrow the net charge of the free carriers (charged particles) penetrating the cross section of the wire in the time unit.	current	$I = \frac{Q}{t}, \ i = \frac{\mathrm{d}q}{\mathrm{d}t}$	ampere	1 A basic unit of SI
The ability of the electric field to exert a force onto the body possessing positive unit charge . This ability is often measured via the work done by the electric field in the process of the unit displacement of the positive unit charge.	electric field strength	$\mathbf{E} = \frac{\mathbf{F}}{q}$	volt per meter	$1\frac{V}{m} = 1\frac{N}{C}$
The process occurring in the electric field \rightarrow the work done by the electric field in the process of displacement of a positive unit charge from one point to the another.	voltage	$U = \frac{W}{q}$	volt	$1 \mathrm{V} = \frac{1 \mathrm{J}}{1 \mathrm{C}}$
The situation in some point of the electric field \rightarrow the potential energy of the body possessing positive unit charge placed in this point of the electric field.	potential	$V = \frac{E_p}{q}$	volt	$1 \mathrm{V} = \frac{1 \mathrm{J}}{1 \mathrm{C}}$
The cyclic process occurring in the electric field \rightarrow the work done by the non- electric force (NEF) in the process of cyclic displacement of a positive unit charge. The NEF, acting in the voltage source separates the positive and	electromotive force (EMF)	$\mathcal{E} = rac{W_{_{NEF}}}{q}$	volt	$1 \mathrm{V} = \frac{1 \mathrm{J}}{1 \mathrm{C}}$
negative charges and generates in such a way the electric field displacing the charge carriers outside the source.	The EMF is a sum of all voltages along the closed path. These voltages can b always presented as the products of currents and resistances (Ohm's law).			
The presence of the "braking" forces acting onto the directed motion of the charged particles (current) in some conducting body \rightarrow the voltage (<i>U</i>) needed for the generating of the unit current (<i>I</i>).	resistance	$R = \frac{U}{I}$	ohm	$1\Omega = \frac{1V}{1A}$
The current-resistive properties of the substance \rightarrow the resistance (<i>R</i>) of the conducting body possessing unit length (<i>l</i>) and unit cross section area (<i>A</i>).	resistivity	$\rho = \frac{RA}{l}$	ohm-meter	$1\Omega\cdot\mathbf{m} = \frac{1\Omega\cdot\mathbf{1m}^2}{1\mathbf{m}}$
The effect of the substance on the electric field \rightarrow the quantity showing how many times weaker is the electric field in the substance than in the vacuum.	relative permittivity	$\varepsilon_r = \frac{E_{\text{vacuum}}}{E_{\text{substance}}}$	no unit	
The effect of the substance on the electric field \rightarrow the product of the permittivity constant ε_0 and the relative permittivity ε_r of the substance.	absolute permittivity	$\mathcal{E}=\mathcal{E}_0\mathcal{E}_r$	farad per meter	$1\frac{C^2}{N\cdot m^2}=1\frac{F}{m}$

The electric field \mathbf{E}_0 generated by the charged body in the vacuum (without substance) if the body generates in the substance the electric field \mathbf{E} .	electric induction	$\mathbf{D} = \varepsilon_0 \mathbf{E}_0 = \varepsilon \mathbf{E}$	coulomb per meter square	$\frac{r}{d}$ $1\frac{C}{m^2}$
The ability of the system of conducting bodies to create the electric field and to store the charge \rightarrow the change of the charge of one conducting body divided by the change of the voltage between the bodies.	capacitance	$C = \frac{Q}{U} = \frac{\mathrm{d}q}{\mathrm{d}u}$	farad	$1 \mathrm{F} = \frac{1 \mathrm{C}}{1 \mathrm{V}}$
The ability of the system of charged bodies to perform work \rightarrow the energy stored in the capacitor possessing the capacitance <i>C</i> and the voltage <i>U</i> .	energy of the electric field	$E_e = \frac{C U^2}{2}$	joule	$1 J = 1C \cdot 1V$
The ability of the magnetic field to exert a force onto the wire \rightarrow the force exerted to the unit current-length element perpendicular to the magnetic field. The unit current-length element is the piece of wire carrying the unit current (1 A) and possessing the unit length (1 m).	magnetic induction	$B = \frac{F}{I \ l}$ $d\mathbf{F} = I \ d\mathbf{I} \times \mathbf{B}$	tesla	$1 \mathrm{T} = \frac{1 \mathrm{N}}{1 \mathrm{A} \cdot 1 \mathrm{m}}$
The ability of the magnetic field lines to penetrate some surface \rightarrow the product of the magnetic induction <i>B</i> , the area of the surface <i>A</i> and the cosine of the angle β between the normal of the surface and the field lines.	magnetic flux	$\boldsymbol{\Phi} = \boldsymbol{B}\boldsymbol{A}\cos\boldsymbol{\beta}$ $\boldsymbol{\Phi} = \mathbf{B}\cdot\mathbf{A}$	weber	$1 \text{ Wb} = 1\text{T} \cdot 1\text{m}^2$
The effect of the substance on the magnetic field \rightarrow the quantity showing how many times stronger is the magnetic field in the substance than in the vacuum.	relative permeability	$\mu_r = \frac{B_{\text{substance}}}{B_{\text{vacuum}}}$	no unit	– NH
The effect of the substance on the magnetic field \rightarrow the product of the permeability constant μ_0 and the relative permeability μ_r of the substance.	absolute permeability	$\mu = \mu_0 \mu_r$	henry per meter	$1\frac{\mathbf{n}}{\mathbf{A}^2} = 1\frac{\mathbf{n}}{\mathbf{m}}$
The magnetic induction \mathbf{B}_0 generated by the current-carrying wire in the vacuum (without substance) if the wire generates in the substance the magnetic induction B .	magnetic field strength	$\mathbf{H} = \frac{\mathbf{B}_0}{\mu_0} = \frac{\mathbf{B}}{\mu}$	ampere per meter	$1\frac{A}{m}$
The MMF is a sum of all magnetic voltages along the closed path. These voltages can be presented as the scalar products of magnetic field strengths \mathbf{H} and small path lengths d \mathbf{l} (considered as the vector quantities).	magnetomotive force (MMF)	$M = \oint_L \mathbf{H} \cdot \mathbf{dl}$	ampere-turn	1 A-t
The current-loaded condition of the substance \rightarrow the net charge of the free carriers (charged particles) penetrating the unit area of the cross section of the wire in the time unit .	current density	$\mathbf{J} = \frac{\mathrm{d}^2 q}{\mathrm{d}\mathbf{A} \cdot \mathrm{d}t}$	ampere per meter squared	$1\frac{A}{m^2}$
The ability of the system of wires to create the magnetic field and to store the current \rightarrow the change of the linked magnetic flux in the system divided by the change of the current .	inductance	$L = \frac{\Phi}{I} = \frac{\mathrm{d}\Phi}{\mathrm{d}i}$	henry	$1 \mathrm{H} = \frac{1 \mathrm{Wb}}{1 \mathrm{A}}$
The ability of the system of current-carrying wires to perform work \rightarrow the energy stored in the inductor possessing the inductance <i>L</i> and the current <i>I</i> .	energy of the magnetic field	$E_m = \frac{LI^2}{2}$	joule	$1 J = 1Wb \cdot 1A$