HARMONIC OSCILLATIONS
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where K is the force coefficient.

— restoring force.

Sowe have-kX=ma and ma + k x =0.

Because the acceleratianis the second
derivative of the coordinatX:
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equation of the oscillations has the form:

X + - X = 0 andits solution is:

X = Acoswgt, where the angular
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Fei= — K X (Hooke’s law),

DAMPED OSCILLATIONS
I:rest"' I:drag =ma
Fdrag:_ bV, Where

b is thedrag coefficient

Sowe have:—kx—bv=ma

or ma+bv+kx=0. Dividing by massm
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and its solution: X = Ay e_ﬁtCOSwt
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FORCED OSCILLATIONS
I:rest"' I:drag + I:out =ma

ma + bv + kx = K
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] a+—v+ —x=— coswt
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X+ 2fX+ ofX = a,cos ot
The solution of thiglifferential equation

is:  x=Aw) COS t + ¢)

where the phase angle = ¢ (5, wg) and
the amplitudeA depend on the frequency
« of the periodic forceF,; acting from
outside:A = A(w).
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