## HARMONIC OSCILLATIONS



Newton's 2nd law:  $F_{rest} = m a$   $F_{rest}$  – restoring force.  $F_{rest} = F_{el} = -k x$  (Hooke's law),

where k is the force coefficient.

So we have: -k x = m a and m a + k x = 0.

Because the acceleration a is the second derivative of the coordinate x:

 $a = \frac{d}{dt} \frac{d}{dt} x = \ddot{x}$ , the **differential** equation of the oscillations has the form:

$$\ddot{x} + \frac{k}{m}x = 0$$
 and its solution is:

$$x = A \cos \omega_0 t$$
, where the angular  
frequency is  $\omega_0 = \sqrt{\frac{k}{m}}$  and the period



## **DAMPED OSCILLATIONS**



or m a + b v + k x = 0. Dividing by mass m

we get  $a + \frac{b}{m}v + \frac{k}{m}x = 0$ , the **differential** 

equation: 
$$\ddot{x} + 2 \frac{b}{2m} \dot{x} + \frac{k}{m} = 0$$

and its solution:  $x = A_0 e^{-\beta t} \cos \omega t$ 

where 
$$\beta = \frac{b}{2m}$$
;  $\omega = \sqrt{\omega_0^2 - \beta^2}$ 



## FORCED OSCILLATIONS



$$\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = a_m \cos \omega t$$

The solution of this differential equation

is: 
$$x = A(\omega) \cos(\omega t + \varphi)$$

where the phase angle  $\varphi = \varphi(\beta, \omega_0)$  and the amplitude *A* depend on the frequency  $\omega$  of the periodic force  $F_{out}$  acting from outside:  $A = A(\omega)$ .



the resonance frequency  $\omega_r = \sqrt{\omega_0^2 - 2\beta^2}$