Power fun	ctions (PF):			x^{n-2} + is a sum of various pow	rer functions.	
Special cas	es of PF:	Linear function		Square function	Inverse square function	Inverse value function
Mathematical form:		y = ax $(n = 1)$		$y = ax^2$ (n = 2)	$y = ax^{-2} = \frac{a}{x^2}$ (n = -2)	$y = ax^{-1} = \frac{a}{x}$ (n = -1)
Examples from physics:	uniform m The coordi depends in The speed b) <u>The line</u> body p de the speed The mass of constant. c) <u>Capacito</u> stored in th linear way	nate of the body x linear way on time t . v is a constant. ear momentum of the epends in linear way on	motic (assu b) <u>Ki</u> deper c) <u>En</u>	splacement at the non-uniform on <i>s</i> depends on the time <i>t</i> ming $x_0 = 0, v_0 = 0$): $s = \frac{at^2}{2}$. netic energy of the body E_k and so the speed <i>v</i> : $E_k = \frac{mv^2}{2}$. ergy of the electric field E_e and so the voltage <i>U</i> : $E_e = \frac{CU^2}{2}$.	a) <u>The gravitational force:</u> $F_G = G \frac{m_1 m_2}{r^2}$, where m_1 and m_2 are the masses of interacting bodies and r is the distance between the centres of mass of these bodies. b) <u>Electric field strength</u> E caused by the point charge q at the distance r from this charge: $E = k \frac{q}{r^2}$ k – Coulomb constant.	a) <u>The potential energy</u> of the gravitational force: $E_{pot} = -G \frac{m_1 m_2}{r}$ Abbreviations are the same (\leftarrow), <i>G</i> is the Newton gravitation constant. b) <u>Potential</u> <i>V</i> or φ caused by the point charge <i>q</i> at the distance <i>r</i> from this charge: $\varphi = k \frac{q}{r}$ k - Coulomb constant.
Graphical represen- tation:		$x = x_0 + vt$		$x = at^2/2$	$F = G \frac{m_1 m_2}{r^2}$	$E_{pot} = -G \frac{m_1 m_2}{r}$ E_p

Functions in physics are either power functions or exponential functions:

The domination	The device time of the function The speed of shares of				f abange of the neuron function can be	dogorih	ad by a function that has an avecaget	
The derivative of the function		The speed of change of the		The speed of change of the power function can be described by a function that has an exponent				
is the value of the speed of change of the function at the		linear function is <u>constant:</u>		that is by one number smaller than the initial function. For instance, the speed of change of square				
-	function at the	$v_t = \frac{d}{dt}x = const$		function can be described as a linear function.				
given time:				$v_t = \frac{d}{dt}x = \frac{d}{dt}\left(\frac{at^2}{2}\right) = \frac{a}{2}2t = at$ (speed at the moment of time t or the final speed)				
				dt dt dt	$\begin{pmatrix} 2 \end{pmatrix} 2^{-1}$			
The	Linear function:	Square function	: examp	le (a)	Inverse square function: example (b))	<u>Inverse value function</u> : example (b)	
derivative	example (b)	Ve Displacement = average s $s = \frac{0+at}{2} * t = \frac{at^2}{2}$		peed * time:	$\int_{1}^{2} E dr = \int_{1}^{2} k \frac{q}{r^{2}} dr = k \frac{q}{r_{1}} - k \frac{q}{r_{2}} = U_{12}$		$\frac{\mathrm{d}}{\mathrm{d}r}\varphi = \frac{\mathrm{d}}{\mathrm{d}r}\left(k\frac{q}{r}\right) = -k\frac{q}{r^2} = -E.$	
or the	upwards, derivativ			_				
integral	is constant:		2				The derivative of the potential $\varphi =$	
of the	$\frac{\mathrm{d}}{\mathrm{d}v}p = \frac{\mathrm{d}}{\mathrm{d}v}(mv) = n$	m (initial speed = 0, final	0. final speed $v = a t$		The integral of the electric field stren		- field strength <i>E</i> . If we move along	
function:	dv = dv = dv		•,		the potential anterence between the two	two	the field direction, then the potential	
= const					field points or the voltage.		decreases (sign "minus").	
The	The integral of the linear function is		The inve	rse square fu	unction is the dependence of a force		The inverse value function is	
property of	the <u>square function</u> . The formula		characteristic of the field from the distance between the body			describing the dependence of an		
the nature	$s = \frac{0+at}{2} * t = \frac{at^2}{2}$		exerting the force and the point of interest. In essence, this is \underline{a}			energy characteristic (that is, an		
or the	$s = \frac{0 + a}{2}$	$t + t = \frac{\alpha t}{2}$	-		atement that the area can be calculate		integral of the force characteristic) of	
model	<u> </u>	2	square function of a linear dimension. Thus, if the distance of the			an $FS = const q/A$ type of field (here		
describing	the linear function	hical integration of	point of i	point of interest from the point source undergoes n-fold increase,			FS stands for field strength) from the	
it, which	the inteal function			hen the area of the imaginary sphere surrounding such point			distance between the body exerting the	
causes	In the case of the n	non-linear functions source		ndergoes n ² -	fold increase. This is in turn accompa	nied	force and the point of interest.	
exactly	the changes are ob		by the n ²	by the n^2 -fold decrease of the probability of a field particle to			NB! The prerequisite for the	
such kind	Ū.	sh the non-linearity Field st			nt of interest.		development of the FS = const q/A	
of				d strength (FS) = const $\frac{q \text{ (charge)}}{A \text{ (area)}}$			type of field is the endless life-span of	
functional	-						the interaction-mediating particle (field	
dependence	(the graph of the fu			n (area)		particle). It means that the particle		
between	depicted as a line s	a nne segment).					does not undergo a spontaneous	
physical							decomposition.	
quantities.							-	

Exponential functions (EF): the common mathematical form is $y = a e^{\pm bx} = a \exp(\pm bx)$ Definition: $e^x = 1 + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$, where the factorial n! of the number n is defined as the product: $n! = 1 \cdot 2 \cdot 3 \cdot (n-1) \cdot n$. The Euler number $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + ... = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{6!} + \frac{1}{24!} + ... = 1 + 1 + 0.5 + 0.167 + 0.042 + 0.008 + ... = 2.7183.$ Such kind of sum is called **converging series** in mathematics. If $x \ll 1$, then we get a very helpful formula $e^x \approx 1 + x$. For instance $e^{0,1} \approx 1 + \frac{0.1}{1} = 1.1$. The exact value is $e^{0.1} = 1 + \frac{0.1}{1} + \frac{0.01}{2} + \frac{0.001}{6} + \frac{0.0001}{24} + \dots = 1 + 0.1 + 0.005 + 0.000167 + \dots = 1.105171$. The difference can be neglected. $e^{2} = 1 + \frac{2^{1}}{1} + \frac{2^{2}}{2} + \frac{2^{3}}{6} + \frac{2^{4}}{24} + \frac{2^{5}}{120} + \dots = 1 + 2 + 2 + 1.333 + 0.667 + 0.267 + \dots \approx 7.4.$ $e^{3} = 1 + \frac{3^{1}}{1} + \frac{3^{2}}{2} + \frac{3^{3}}{6} + \frac{3^{4}}{24} + \frac{3^{5}}{120} + ... = 1 + 3 + 4.5 + 4.5 + 3.375 + 2.025 + ... \approx 20.$ The simple exponential function can be presented in the form of the **power series**: $\exp x = 1 + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots$ The cosine function $\cos x$ is an even function $[\cos (-x) = \cos x]$ and it can be presented in the form of the power series, consisting of the even terms of the series

of the exponential function, but in such a way that the signs in front of the terms are varying (+ and –):

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

The sine function $\sin x$ is an odd function $[\sin (-x) = -\sin x]$ and it can be presented in the form of the power series, consisting of the odd terms of the series of the exponential function, but in such a way that the signs in front of the terms are varying (+ and -):

$$\sin x = \frac{x^1}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Now we have

$$\exp(ix) = 1 + \frac{(ix)^{1}}{1!} + \frac{(ix)^{2}}{2!} + \frac{(ix)^{3}}{3!} + \frac{(ix)^{4}}{4!} + \frac{(ix)^{5}}{5!} + \dots = 1 + i\frac{x^{1}}{1!} + i^{2}\frac{x^{2}}{2!} + i^{3}\frac{x^{3}}{3!} + i^{4}\frac{x^{4}}{4!} + i^{5}\frac{x^{5}}{5!} + \dots = 1 + i\frac{x^{1}}{1!} - \frac{x^{2}}{2!} - i\frac{x^{3}}{3!} + \frac{x^{4}}{4!} - i\frac{x^{5}}{5!} + \dots = \cos x + i\sin x.$$

So we get the Euler formula $\exp(ix) = \cos x + i \sin x$, which enables us to switch from the trigonometric form of the complex number to the exponential form of the complex number.

According to the Euler formula, the trigonometric sine and cosine functions are the exponential functions, too: $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$ and $\cos x = \frac{e^{ix} + e^{-ix}}{2}$.

Special cases:		Exponential decay		Limited exponential increase	Sine function	Cosine function	
Mathematical form: $y = A$		$y = A e^{-bx} = \frac{A}{e^{bx}}$		$y = A(1 - e^{-bx}) = A - \frac{A}{e^{bx}}$	$y = A\sin x = A\frac{e^{ix} - e^{-ix}}{2i}$	$y = A\cos x = A\frac{e^{ix} + e^{-ix}}{2}$	
Examples	a) Decrease of	the amplitude A as a	a) Ind	crease of the <u>voltage</u> $u(t)$ between the	a) <u>Equation of motion</u> at	the harmonic oscillations:	
from	function of time	t t for the <u>damped</u>	plates of a <u>capacitor</u> used as the energy storage,		$x(t) = A \sin \omega t$ or $x(t) = A \cos \omega t$,		
physics:	oscillations:		as a f	function of time <i>t</i> :	where the maximum value A of the coordinate x is		
	$\overline{A(t)} = A_0 \exp(-\beta t) = A_0 \exp(-t/\tau),$		$u(t) = U_{\rm m} [1 - \exp(-t/\tau)].$ $U_{\rm m}$ is the limit		called <u>amplitude</u> , the angle ωt determining the		
	where A_0 is the initial amplitude, $\beta = 1/\tau$		(maximum of the voltage). In fact it is the		coordinate of the oscillating body is called <u>phase</u> and		
		It of damping and τ is	elect	romotive force of the source used by the	the speed of the changing of the phase is called		
	the time consta			ging of the capacitor. τ is the time	angular frequency ω .		
	b) The law of the radioactive decay:		const		b) Alternating current (AC):		
		$(-t/\tau)$, where $N(t)$ is the	b) In	crease of the <u>current</u> $i(t)$ through the	$i(t) = I_{\rm m} \sin \omega t$ or $i(t) = I_{\rm m} \cos \omega t$,		
		adioactive nuclei at the	-	ctor used for the energy storage, as a	where the maximum value $I_{\rm m}$ of the instantaneous		
		initial number of the		ion of time <i>t</i> :	current <i>i</i> serves as the amplitude.		
	radioactive nuclei and τ – time constant.			$I_{\rm m} [1 - \exp(-t/\tau)]$. $I_{\rm m} = U_{\rm m}/R$ is the limit		I	
	c) <u>The law of the absorption of the light:</u> $I(x) = I_0 \exp(-\kappa x)$, where I_0 is the intensity of the incident light and $I(x)$ is the intensity of the light after passing the distance x from the surface, κ – absorption coefficient (in the units cm ⁻¹).			imum of the current), where <i>R</i> is the	The <u>sine function</u> is used in case if we start counting time at the equilibrium state of the pendulum ($x = 0$, when $t = 0$) The <u>cosine function</u> is used in case if we start counting time at the maximum land design start of the new delays		
				ance of the circuit used.			
				<u>e constants</u> : In the case (a) $\tau = RC$, where			
				the resistance and C is the capacitance. In			
				ase (b) $\tau = L/R$, where R is the resistance			
				L is the inductance of the circuit used.	(x = A, when t = 0)	I	
<u>Currational</u>	1 7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		L is the inductance of the circuit used.			
Graphical				$u(t) = U \left[1 - \exp(-t/\tau) \right]$			
represen-	I_{o}					$x = A \sin(\omega t)$	
tation:			T	Ā		$x = A \cos(\omega t)$	
		$\kappa) = I_0 \exp(-\kappa x)$	1		18		
				0.37U	4		
				· · ·		sin cos	
	/ 1 ·\		4			$\langle \rangle$	
	0.5I		0	.5U		$\langle \rangle$	
		\mathbf{i}			ωt		
]	- *		0.63U			
	$I_{\theta} / e = 1$		1		1	T/4 2T/4 3T/4 T	
	$-0.37I_0$		1	ا گو	1		
						\sim \wedge /	
		d, x	⊢ ¥		-A•		
	0		0	au 2 $ au$			
	U	1/κ 2/κ					

The derivative of t $v_x = \frac{d}{dx}y$ or $v_t =$		$ = \frac{U}{\tau} e^{-\frac{t}{\tau}} \qquad v_t = \frac{d}{dt} A \sin \omega t = \omega A \cos \omega t = \omega A \cos (-\omega t) = \omega A \sin [\pi/2 - (-\omega t)] = \omega A \sin (\omega t + \pi/2) $		
dx	dt (case a)			
The derivative of the function as the instantaneous value of the speed of change of the function.	The derivative is also exponential function but has a phase shift radians with respect to the initial function. It means that if the init function is exponential decay then its derivative is limited exponential increase. If the initial function is limited exponential increase the derivative is exponential decay. So the graphs of the function and derivative are mirror images of each other with respect to the arg axis.	tialhas a phase shift + $\pi/2$ radians with respect to the initialentialfunction. It means that all which happens with the function alsoin itshappens with the derivative but in quarter of period earlier. Thelitsspeed of change (derivative) leads the function itself.		
The property of the nature or the model describing it, which causes exactly such kind of functional dependence between physical quantities.	The system possesses an <u>equilibrium state</u> and the <u>restoring</u> <u>force</u> (force directed to the equilibrium state) is acting on the system and determining its motion. But the resistive force or <u>drag force</u> is also present and its impact is comparable to the impact of the restoring force. As a result <u>the changes are slow</u> and the <u>inertial properties of the system are not important. The system is asymptotically approaching the equilibrium state and does not exceed it. The oscillations do not occur. NB! The exponential dependence occurs when the <u>change</u> of the physical quantity studied is proportional to the <u>initial value</u></u>	The system possesses an <u>equilibrium state</u> and the <u>restoring force</u> (force directed to the equilibrium state) is acting on the system and determining its motion. The resistive force or <u>drag force</u> is also present but <u>its impact is negligible</u> with respect to the restoring force. As a result <u>the changes are fast</u> and the <u>inertial properties of the system are becoming important</u> . The system does not stop at the equilibrium state. It continues to move inertially and <u>exceeds</u> the equilibrium state. The oscillations occur. NB! An important parameter is the <u>ratio</u> of the quantity describing the <u>inertial properties</u> of the system (mass <i>m</i> in the case of mechanics, inductance <i>L</i> in the case of electromagnetic field) and the quantity		
	of this quantity (function). The change is proportional to the remaining amount. <u>Only that can change what has not changed yet</u> . <i>Only those can die, who are yet alive</i> .	describing the <u>drag force</u> (drag coefficient <i>b</i> in the case of mechanics, resistance <i>R</i> in the case of electromagnetic field). The oscillations occur only when this ratio is essentially bigger than the half-period $T_0/2$ of the oscillations. In the case of <u>inductor</u> (see above) the ratio aforementioned is the time constant $\tau = L/R$ of the <i>LR</i> -circuit. So the condition for the occurrence of the oscillations is $\frac{L}{R} > \frac{T_0}{2}$.		