Functions in physics are either power functions or exponential functions:

Power functions (PF):	Polynome $y=a x^{n}+b x^{n-1}+c x^{n-2}+.$. is a sum of various power functions.			
Special cases of PF:	Linear function	Square function	Inverse square function	Inverse value function
Mathematical form:	$y=a x$ $(n=1)$	$y=a x^{2}$ $(n=2)$	$y=a x^{-2}=\frac{a}{x^{2}} \quad(n=-2)$	$y=a x^{-1}=\frac{a}{x} \quad(n=-1)$

Examples from physics:	a) Equation of motion at the uniform motion: $\quad x=v t$ The coordinate of the body x depends in linear way on time t. The speed v is a constant. b) The linear momentum of the body p depends in linear way on the speed $v: \quad p=m v$. The mass of the body m is a constant. c) Capacitor: The electric charge q stored in the capacitor depends in linear way on the voltage U : $q=C U$ The capacitance C is a constant.	a) Displacement at the non-uniform motion s depends on the time t (assuming $x_{0}=0, v_{0}=0$): $s=\frac{a t^{2}}{2} .$ b) Kinetic energy of the body E_{k} depends on the speed v : $E_{k}=\frac{m v^{2}}{2}$ c) Energy of the electric field E_{e} depends on the voltage U : $E_{e}=\frac{C U^{2}}{2}$	a) The gravitational force: $F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$, where m_{1} and m_{2} are the masses of interacting bodies and r is the distance between the centres of mass of these bodies. b) Electric field strength E caused by the point charge q at the distance r from this charge: $E=k \frac{q}{r^{2}}$ k - Coulomb constant.	a) The potential energy of the gravitational force: $E_{p o t}=-G \frac{m_{1} m_{2}}{r}$ Abbreviations are the same (\leftarrow), G is the Newton gravitation constant. b) Potential V or φ caused by the point charge q at the distance r from this charge: $\varphi=k \frac{q}{r}$ k - Coulomb constant.
Graphical representation:				

The deriva is the value change of t given time:	of the function he speed of nction at the	The speed of change of the linear function is constant:$v_{t}=\frac{\mathrm{d}}{\mathrm{~d} t} x=\mathrm{const}$		The speed of change of the power function can be described by a function that has an exponent that is by one number smaller than the initial function. For instance, the speed of change of square function can be described as a linear function. $v_{t}=\frac{\mathrm{d}}{\mathrm{~d} t} x=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{a t^{2}}{2}\right)=\frac{a}{2} 2 t=a t$ (speed at the moment of time t or the final speed)	
The derivative or the integral of the function:	Linear function: example (b) upwards, derivative is constant: $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} v} p=\frac{\mathrm{d}}{\mathrm{~d} v}(m v)=m \\ & =\text { const } \end{aligned}$	Square functi Displacement $s=\frac{0+a t}{2} * t$ (initial speed	ex rera	(a) \quadInverse square function: example (b) $\int_{1}^{2} E \mathrm{~d} r=\int_{1}^{2} k \frac{q}{r^{2}} \mathrm{~d} r=k \frac{q}{r_{1}}-k \frac{q}{r_{2}}=U_{12}$ The integral of the electric field strength is the potential difference between the two field points or the voltage.	Inverse value function: example (b) $\frac{\mathrm{d}}{\mathrm{~d} r} \varphi=\frac{\mathrm{d}}{\mathrm{~d} r}\left(k \frac{q}{r}\right)=-k \frac{q}{r^{2}}=-E .$ The derivative of the potential $\varphi=$ - field strength E. If we move along the field direction, then the potential decreases (sign ,,minus").
The property of the nature or the model describing it, which causes exactly such kind of functional dependence between physical quantities.	The integral of the the square function $s=\frac{0+a t}{2}$ represents the grap the linear function In the case of the n the changes are obs interval of the argu enough to establish (the graph of the fu depicted as a line s	ar function is formula $=\frac{a t^{2}}{2}$ integration of $a t$. near functions d in the values wide non-linearity on cannot be ent).	The char exer law squa poin then sour by th reach Field	se square function is the dependence of a force istic of the field from the distance between the body the force and the point of interest. In essence, this is a ometry: a statement that the area can be calculated as a nction of a linear dimension. Thus, if the distance of the interest from the point source undergoes n-fold increase, area of the imaginary sphere surrounding such point dergoes n^{2}-fold increase. This is in turn accompanied -fold decrease of the probability of a field particle to ctly this point of interest. $\text { ength }(\mathrm{FS})=\text { const } \frac{q(\text { charge })}{A(\text { area })}$	The inverse value function is describing the dependence of an energy characteristic (that is, an integral of the force characteristic) of an FS $=$ const q / A type of field (here FS stands for field strength) from the distance between the body exerting the force and the point of interest. NB! The prerequisite for the development of the FS = const q / A type of field is the endless life-span of the interaction-mediating particle (field particle). It means that the particle does not undergo a spontaneous decomposition.

Exponential functions (EF): the common mathematical form is $\quad y=a e^{ \pm b x}=a \exp (\pm b x)$

Definition: $e^{x}=1+\frac{x^{1}}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$, where the factorial n ! of the number n is defined as the product: $n!=1 \cdot 2 \cdot 3 \cdot(n-1) \cdot n$.
The Euler number $e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+. .=1+\frac{1}{1}+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+. .=1+1+0.5+0.167+0.042+0.008+\ldots=\mathbf{2 . 7 1 8 3}$.
Such kind of sum is called converging series in mathematics. If $x \ll 1$, then we get a very helpful formula $e^{x} \approx 1+x$.
For instance $e^{0,1} \approx 1+\frac{0.1}{1}=1.1$. The exact value is $e^{0.1}=1+\frac{0.1}{1}+\frac{0.01}{2}+\frac{0.001}{6}+\frac{0.0001}{24}+\ldots=1+0.1+0.005+0.000167+\ldots=1.105171$.
The difference can be neglected.
$e^{2}=1+\frac{2^{1}}{1}+\frac{2^{2}}{2}+\frac{2^{3}}{6}+\frac{2^{4}}{24}+\frac{2^{5}}{120}+. .=1+2+2+1.333+0.667+0.267+. . \approx 7.4$.
$e^{3}=1+\frac{3^{1}}{1}+\frac{3^{2}}{2}+\frac{3^{3}}{6}+\frac{3^{4}}{24}+\frac{3^{5}}{120}+. .=1+3+4.5+4.5+3.375+2.025+. . \approx 20$.
The simple exponential function can be presented in the form of the power series: $\exp x=1+\frac{x^{1}}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\ldots$
The cosine function $\cos x$ is an even function $[\cos (-x)=\cos x]$ and it can be presented in the form of the power series, consisting of the even terms of the series of the exponential function, but in such a way that the signs in front of the terms are varying (+ and -):
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$
The sine function $\sin x$ is an odd function $[\sin (-x)=-\sin x]$ and it can be presented in the form of the power series, consisting of the odd terms of the series of the exponential function, but in such a way that the signs in front of the terms are varying (+ and -):
$\sin x=\frac{x^{1}}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$,
Now we have
$\exp (i x)=1+\frac{(i x)^{1}}{1!}+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\ldots=1+i \frac{x^{1}}{1!}+i^{2} \frac{x^{2}}{2!}+i \frac{x^{3}}{3!}+i \frac{x^{4}}{4!}+i \frac{x^{5}}{5!}+. .=1+i \frac{x^{1}}{1!}-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}-i \frac{x^{5}}{5!}+. .=\cos x+i \sin x$.
So we get the Euler formula $\exp (i x)=\cos x+i \sin x$, which enables us to switch from the trigonometric form of the complex number to the exponential form of the complex number.
According to the Euler formula, the trigonometric sine and cosine functions are the exponential functions, too: $\sin x=\frac{e^{i x}-e^{-i x}}{2 i}$ and $\cos x=\frac{e^{i x}+e^{-i x}}{2}$.

Special cases:	Exponential decay	Limited exponential increase	Sine function	Cosine function
Mathematical form:	$y=A e^{-b x}=\frac{A}{e^{b x}}$	$y=A\left(1-e^{-b x}\right)=A-\frac{A}{e^{b x}}$	$2 i$	$A \cos x=A \frac{e^{i x}+e}{2}$
	a) Decrease of the amplitude A as a function of time t for the damped oscillations: $A(t)=A_{0} \exp (-\beta t)=A_{0} \exp (-t / \tau)$, where A_{0} is the initial amplitude, $\beta=1 / \tau$ is the coefficient of damping and τ is the time constant. b) The law of the radioactive decay: $N(t)=N_{0} \exp (-t / \tau), \quad$ where $N(t)$ is the number of the radioactive nuclei at the time t, N_{0} - the initial number of the radioactive nuclei and τ-time constant. c) The law of the absorption of the light: $I(x)=I_{0} \exp (-\kappa x)$, where I_{0} is the intensity of the incident light and $I(x)$ is the intensity of the light after passing the distance x from the surface, $\kappa-$ absorption coefficient (in the units cm^{-1}). a) Increase of the voltage $u(t)$ between the plates of a capacitor used as the energy storage, as a function of time t : $u(t)=U_{\mathrm{m}}[1-\exp (-t / \tau)] . \quad U_{\mathrm{m}}$ is the limit (maximum of the voltage). In fact it is the electromotive force of the source used by the charging of the capacitor. τ is the time constant. b) Increase of the current $i(t)$ through the inductor used for the energy storage, as a function of time t : $i(t)=I_{\mathrm{m}}[1-\exp (-t / \tau)] . \quad I_{\mathrm{m}}=U_{\mathrm{m}} / R$ is the limit (maximum of the current), where R is the resistance of the circuit used. Time constants: In the case (a) $\tau=R C$, where R is the resistance and C is the capacitance. In the case (b) $\tau=L / R$, where R is the resistance and L is the inductance of the circuit used.		a) Equation of motion at the harmonic oscillations: $x(t)=A \sin \omega t \quad \text { or } \quad x(t)=A \cos \omega t,$ where the maximum value A of the coordinate x is called amplitude, the angle ωt determining the coordinate of the oscillating body is called phase and the speed of the changing of the phase is called angular frequency ω. b) Alternating current (AC): $i(t)=I_{\mathrm{m}} \sin \omega t \text { or } i(t)=I_{\mathrm{m}} \cos \omega t,$ where the maximum value I_{m} of the instantaneous current i serves as the amplitude. The sine function is used in case if we start counting time at the equilibrium state of the pendulum ($x=0$, when $t=0$) The cosine function is used in case if we start counting time at the maximally deviant state of the pendulum $(x=A$, when $t=0)$	
Graphi represe tation:				$\begin{aligned} & x=A \sin (\omega t) \\ & x=A \cos (\omega t) \end{aligned}$

The derivative of the function $v_{x}=\frac{\mathrm{d}}{\mathrm{d} x} y$ or $v_{t}=\frac{\mathrm{d}}{\mathrm{d} t} y$	$v_{t}=\frac{\mathrm{d}}{\mathrm{d} t} A_{0} e^{-\frac{t}{\tau}}=-\frac{A_{0}}{\tau} e^{-\frac{t}{\tau}}$ (case a)	$v_{t}=\frac{\mathrm{d}}{\mathrm{d} t}\left[U-U e^{-\frac{t}{\tau}}\right]=\frac{U}{\tau} e^{-\frac{t}{\tau}}$	$v_{t}=\frac{\mathrm{d}}{\mathrm{d} t} A \sin \omega t=\omega A \cos \omega t=\omega A \cos (-\omega t)=$ $\omega A \sin [\pi / 2-(-\omega t)]=\omega A \sin (\omega t+\pi / 2)$

The derivative of the function as the instantaneous value of the speed of change of the function.

The property of

 the nature or the model describing it, which causes exactly such kind of functional dependence between physical quantities.The derivative is also exponential function but has a phase shift of π radians with respect to the initial function. It means that if the initial function is exponential decay then its derivative is limited exponential increase. If the initial function is limited exponential increase then its derivative is exponential decay. So the graphs of the function and its derivative are mirror images of each other with respect to the argument axis.

The system possesses an equilibrium state and the restoring force (force directed to the equilibrium state) is acting on the system and determining its motion. But the resistive force or drag force is also present and its impact is comparable to the impact of the restoring force. As a result the changes are slow and the inertial properties of the system are not important. The system is asymptotically approaching the equilibrium state and does not exceed it. The oscillations do not occur.

NB! The exponential dependence occurs when the change of the physical quantity studied is proportional to the initial value of this quantity (function). The change is proportional to the remaining amount. Only that can change what has not changed yet. Only those can die, who are yet alive.

The system possesses an equilibrium state and the restoring force (force directed to the equilibrium state) is acting on the system and determining its motion. The resistive force or drag force is also present but its impact is negligible with respect to the restoring force. As a result the changes are fast and the inertial properties of the system are becoming important. The system does not stop at the equilibrium state. It continues to move inertially and exceeds the equilibrium state. The oscillations occur.

NB! An important parameter is the ratio of the quantity describing the inertial properties of the system (mass m in the case of mechanics, inductance L in the case of electromagnetic field) and the quantity describing the drag force (drag coefficient b in the case of mechanics, resistance R in the case of electromagnetic field). The oscillations occur only when this ratio is essentially bigger than the half-period $T_{0} / 2$ of the oscillations. In the case of inductor (see above) the ratio aforementioned is the time constant $\tau=L / R$ of the $L R$-circuit. So the condition for the occurrence of the oscillations is $\frac{L}{R}>\frac{T_{0}}{2}$.

