LTFY.01.007 *Physics and Engineering*, an examination task assessing the 4th learning outcome (The student should be able to use the vocabulary introduced at the lectures to explain the basic principles of some engineering devices applying physical terminology in a correct way).

Please explain in the right side of the table the physical phenomena, physical laws, special features of the materials on which is based the statement formulated in the left side.

Some typical questions with the expected answers are shown below:

AC generator: periodically	The rotor of the AC generator is an permanent magnet or electromagnet,
changing electromotive force	which is rotated using an external mechanical energy. The time-varying
(EMF) is created on the	magnetic flux ϕ produced by the rotor induces a time-varying EMF in the
output terminals of the	stator according to the Faraday-Maxwell law of electromagnetic induction:
generator. This EMF depends	$F_{\rm int} = -d\Phi/dt$ The amplitude of this EME is proportional to the rotation
on the rotation frequency of	$E_{ind} = -d\psi/dt$. The amplitude of this Extricts proportional to the rotation frequency ω and the amplitude of the magnetic flux (RS):
the rotor.	Frequency ω and the amplitude of the magnetic flux (DS).
Antonna: Dadia will work	$E_{\text{ind}} = -\omega'\omega' (BS \cos \omega') = \omega'BS \sin \omega' = E_{\text{max}} \sin \omega'$
Antenna: Kaulo will wolk	(EM) we way in this case, the water nine works as an extension to the
better if its external antenna	(EM) waves. In this case, the water pipe works as an extension to the
is brought near a vertical	antenna. A vertical pipe works better, as it is perpendicular to the direction
water pipe. It is not necessary	of the EM wave travel direction, which is almost horizontal. An EM wave
to bring the antenna into	is a transverse wave, which means the electric and magnetic fields are
contact with the pipe.	perpendicular to the direction of energy transfer. The contact is not
	necessary because the frequency is high and the current is able to flow
	through the capacitor formed on the base of the pipe and antenna.
Antistatic protection	Electrostatic charge can build up on the human body in a dry room as a
device: Workers at an	result of the friction between the body and the clothes. The generated
electronics factory have to	voltage can be in the order of magnitude of tens of kilovolts. This voltage is
wear grounded conducting	high enough to create a dielectric breakdown in the oxide layer of
wrist straps.	MOSFETs. Wearing a grounded wrist strap allows the charges to flow from
	the body to the ground. Antistatic devices are also required for working
	with computer components.
AC asynchronous motor:	An asynchronous motor is a type of an induction motor in which the
alternating current (AC)	electric current in the rotor needed to produce torque is obtained by
asynchronous motor works	electromagnetic induction from the rotating magnetic field of the stator.
without electrical	The current in the rotor creates a magnetic field, which due to Lenz's law,
connections to the rotor.	is trying to compensate the changes of the stator's rotating magnetic field.
	So the rotor's magnetic field is trying to hold the same direction as the
	rotating field created by the stator. It means that the rotating magnetic field
	of the stator will bring the rotor also into rotation. The torque acting on the
	rotor exists only when it rotates at a smaller frequency than the rotating
	magnetic field of the stator, hence the term asynchronous.
Bimetallic circuit breaker is	The bimetallic circuit breaker is a device consisting of two strips of
a resettable circuit breaker, in	different metals which are riveted together and have different thermal
contrast to a fuse.	expansion coefficients. If a higher than wanted current is flowing thorough
	the breaker, the device will warm up, the length of both strips will increase
	in a different way, the bimetallic strip bends sideways and breaks the
	circuit. If the strip cools down, it unbends and the circuit breaker can be
	reused.
Bipolar junction transistor	A bipolar junction transistor contains two pn junctions. These junctions
is a current-controlled	separate three regions, which are called emitter, base and collector. In
transistor, unlike the field-	typical operation, the base-emitter junction is forward biased and the base-
effect transistor.	collector junction is reverse biased. Increasing the base current allows the
	majority charge carriers of the emitter to enter the base. This increases the
	conductivity of the base and the base-collector junction is opened. A small
	change in the base current induces a large change in the collector current.
	The bipolar transistor is almost not used nowadays because it is a current-
	operated device and needs too much power.

Charge-coupled device	A charge-coupled device uses a large number of metal-oxide-
(CCD)	semiconductor (MOS) capacitors to record the image. Each pixel (<i>picture</i>
stores the brightness of a	<i>element</i>) is represented by one capacitor. Electron-hole pairs are created in
pixel as the charge of the	the junction by incoming photons and the electrons of the pairs are drawn
capacitor.	toward the oxide layer of the capacitor. This charge is moved between the
eupuertoi.	bins of canacitors toward the edge of the device where it is amplified and
	stored. This is done in serial way for each individual pixel. In a CCD
	camera the charge of every nivel is measured separately. It allows the
	brightnesses of pixels to vary. Most professional cameras contain a CCD
CMOS-camera is a camera	In a CMOS-camera, each nivel consists of a pair of complementary MOS
based on complementary	transistors. One of transistors is n-type and the other is n-type. In the first
motel ovide semiconductor	transistors. One of transistors is p-type and the other is n-type. In the first
tachnology	transistor to open. This causes the other transister to close, signaling the
technology.	illumination of the nivel. The signal from each nivel is transmitted and
	information of the pixer. The signal from each pixer is transmitted and
	stored. CMOS-camera is a purely digital device – every pixel can only be
	in two states, illuminated or not.
Curie point: Magnetic	In the case of magnetic memory (the hard disks of computers, for instance)
memory is erased when the	the working ferromagnetic substance possesses a domain structure. In every
memory device is heated to	domain all the magnetic fields of ions are oriented in the same direction. So
an excessive temperature.	each domain is able to store one bit of information. All ferromagnetic
	materials have a certain temperature, called the Curie point, above which
	the domain structure is lost due to thermal disorder. In the heating process,
	the hysteresis loop will also vanish and the stored information will be lost.
	A wide hysteresis loop of the memory material and a high Curie point are
	required for magnetic memory applications.
Diesel engine is a heat	A diesel engine, also known as a compression-ignition engine, is an
engine, which, unlike the	internal combustion engine where the ignition of the mixture of air and fuel
Otto (or: gazoline) engine	is achieved by rapid adiabatical compressing of the mixture. An adiabatic
does not use a spark ignition	process is a process where no heat is exchanged with the environment. In
system.	an adiabatic process, the external work done on a gas increases its internal
	energy, which is proportional to its temperature. For that reason, adiabatical
	compression of a gas increases its temperature to the values, which in
	diesel engine is sufficient for ignition of the fuel mixture. Modern diesel
	engines also have so-called glow plugs, which pre-heat the mixture for use
	in the case of a cold engine.
Direct current (DC) motor	The stationary part of the DC motor called stator contains permanent
is an electrical motor, which	magnets which create a stationary magnetic field in the position of the
works on a direct current	rotor, which is the moving part of the motor. The rotor consists of windings
source. Direct current	of copper wire through which flows the direct current. A current-carrying
motors require permanent	wire with the length <i>l</i> experiences a magnetic force $F_m = B I l$ in the
magnets to operate.	magnetic field <i>B</i> , which creates a torque. In the case of multiple windings,
	the current is directed only through the ones that experience the maximal
	instantaneous torque.
Electric arc discharge can	An electric arc discharge is an electrical breakdown in the initially non-
happen at normal pressure,	conducting gas that produces an ongoing electrical discharge. After
while strong rarification of	starting, the heat from the arc will ionize additionally the gas molecules. In
the gas is needed for a glow	the case of arc discharge the temperature of the conducting gas and the
discharge. The arc discharge	concentration of charge carriers are very high. So the big currents (hundreds
has a lot of applications.	of amperes) are reached at quite low voltages (tens of volts). The arc
	discharge is used for the electrical welding of metals and also in fluorescent
	and gas discharge lamps. The source of the exciting UV light in the
	fluorescent lamp is the arc discharge in mercury. In a glow discharge, the
	gas is ionized directly by the effect of the electric field, which requires a
	high mean-free path and hence, a low density of particles. The voltages are
	high (hundreds of volts), the currents are small (some milliamperes).

Electrical grounding: All	Phase terminal is the terminal possessing a periodically changing voltage
modern electrical devices	with respect to the earth or ground Neutral is the terminal which connects
have three terminals - phase	to the wire that carries current back to the source and has a negligible
neutral and ground terminal	voltage with respect to the earth (ground). Ground terminal is the terminal
neutral and ground terminal.	which provides a low-resistance path to the ground from the casing of the
	device. In case when the casing comes into a faulty contact with the phase
	terminal the ground terminal leads the strong current away from the person
	terminal, the ground terminal leads the strong current away from the person
	using the device and into the earth while also triggering a fuse of circuit
Electrical chielding.	Dieakei.
An electrical device which is	Electric shielding works on the principle, that the electric field inside a
All electrical device which is	conductor is always zero. The external field induces charges of the sufface
diametiana is placed in a how	of a conductor. The field of induced charges exactly cancel the external fields is called a Faraday as as
disruptions is placed in a box	Inclu. An enclosure for smelding external fields is called a Faraday cage.
or net of wires made from	In the case of coastal cable the inner wire carrying the electrical signal
conducting material.	(periodically changing voltage) is shielded by cylindrical net of copper
	wires. This shielding net is typically grounded.
Electrical transport in the	DC motors are reversible. The engine of a decelerating trolley car or a tram
city is economical, because	can be used as a generator, which converts the kinetic energy of a
the kinetic energy from a	decelerating vehicle to the electrical energy. This energy can be transmitted
decelerating trolley car or a	to other venicles through the electrical network. In a regular car, in the case
tram can be used for other	of braking the kinetic energy of the car is converted completely to heat in
trolleys.	the brakes. So the kinetic energy is lost.
Electromagnet:	The starter relay is a strong electromagnet, which is driven by a current
If the driver turns the starter	from the battery. When a strong current passes through the relay, it
key, it activates the starter	magnetizes its iron core armature, which puts the starter electrical motor
relay, which brings the starter	into contact with the battery. Also the movement of the iron core pushes
into mechanical contact with	out a pinion on the starter drive shaft, putting the electric starter motor into
the engine.	a mechanical contact with the engine of the car. The automatic locking
	system of the car doors is also driven by the electromagnets.
Electron microscope is a	As the wavelength of an electron can be up to 10 times shorter than the
microscope that uses a beam	wavelength of visible light photons, electron microscopes have a higher
of high-energy electrons as a	resolving power than light microscopes and can reveal the structure of
source of mumination.	smaller objects. A transmission electron microscope (TEM) can achieve a resolution 0.1 mm and magnifications of up to about $10^7 \text{ times whereas}$
	resolution 0.1 min and magnifications of up to about 10 times whereas
	100st of light incroscopes are diffractionally infinited by resolution about 200 nm and wasful magnifications below 2000 times. The wavelength of
	200 min and userul magnifications below 2000 times. The wavelength of
	electrons λ can be easily controlled by adjustment of the acceleration
	voltage U, because $\lambda = h/(2meU)^{1/2}$.
Field effect transistor	The field-effect transistor consists of only one pn junction. The device
(FEI) is a transitor, that	possesses an active channel through which electrons or holes flow from the
unlike the bipolar junction	source to the drain. If the gate terminal is forward biased, it creates an
transistor, uses the electric	electric field which increases the width of the conducting channel – the
field instead of current to	transistor is opened. In the case of reverse bias, the depletion region of the
control the electrical	pn junction is expanding, the width of the channel is reduced and the
resistance of a transistor.	transistor is effectively closed.
Ground fault circuit	A ground fault circuit interrupter (CFCI) is a circuit breaker which is
interrupter: Ground faun	the neutral wire and phase wire of the circuit. As soon as the phase wire
affectively from electrical	the neutral wife and phase wife of the circuit. As soon as the phase wife
shock	difference between the neutral wire and phase wire is created and the
SHOCK.	intercurve between the neutral wife and phase wife is created and the intercurve breaks the circuit. The time in which the intercurve reacts (as 10)
	menupled of easy the encurt. The time in which the interrupter feacis (Ca 10 ms) is much shorter than the working evaluated the hymon beart and so the
	dangerous equipment is switched out before the heart of the operating
	person is damaged. Therefore the CECI protects the person very effectively
	in the case of contact with the faulty wire
1	in the case of contact with the faulty whe.

Hall sensor: The Hall effect	Hall effect is the creation of a voltage difference across a current-carrying
is most commonly used to	conductor or semiconductor in the case of applied magnetic field. The
measure the magnetic flux	charge carriers moving in a magnetic field experience a Lorentz force in the
density (or magnetic	direction perpendicular both to the current and the magnetic field. This
induction) B.	force creates a charge separation, which generates the Hall voltage $U_{\rm H}$
,	between the ends of the conductor. The Hall voltage is proportional to the
	current and the magnetic flux density B: $U_{\rm H} = \text{const} IB/d$. Hence we can
	measure the magnetic flux density B by measuring the voltage.
Heat engine is a device that	A heat engine is a device that extracts some amount of heat energy Q_1
operates between a hot and a	from the hotter environment, converts some of it to the useful mechanical
cold environment, converting	work W and delivers the rest amount of heat O_2 to the colder environment.
thermal energy into	The efficiency of the heat engine relates how much useful work is output
mechanical energy	for a given amount of heat energy input: $n = W/Q_1 = (Q_1 - Q_2)/Q_1$ The
incontantear energy.	maximum efficiency of the heat engine is determined by the temperatures
	of hot (T_{i}) and cold (T_{i}) any irronments, respectively: $n_{i} = (T_{i}, T_{i})/T_{i}$
High voltage transmission	of not (T_1) and cold (T_2) environments, respectively. $T_{\text{max}} = (T_1 - T_2)/T_1$.
line: Wiree of the	The power line whes have a high voltage with respect to the ground. The
transmission line are	ground and are usually made of conducting materials. Longer insulating
transmission line are	ground and are usually made of conducting materials. Longer insulating
separated from the poles of	suspensions that insulate the wires from the supporting structures allow for L_{L} and L_{L} which reduces the
in explore a suspended	smaller electric field value in the material $(E = U/t)$, which reduces the
	possibility of a breakdown.
Incandescent light bulb:	The cross-section area A of the filament is much smaller than that of the
The filament of the light bulb	wires. So the resistance $R = \rho l / A$ of the unit length l of the filament is
is glowing not, while the	bigger than the resistance of unit length of the connecting wire. Also are the
connecting copper wires	filaments made from tungsten (W), which has a higher resistivity than that
remain cold.	of the copper wires. For that reason, the power P dissipated per unit length
	is much greater in the filament than in the wires, as $P = I^2 R$ and the same
	current <i>I</i> is flowing through the filament and wires.
Inductor spark: Breaking a	This happens if the inductance of the circuit is great enough. Closing the
circuit causes a spark in the	circuit allows current to flow in the inductor, which generates the
breaker, while closing the	electromotive force (EMF) of self-induction in the inductor. According to
circuit does not. This can	Lenz' law, this EMF opposes the external voltage source and does not let
happen even in the case of a	the current to change instantaneously. While opening the circuit however,
low voltage circuit.	the inductor acts as though to conserve the current and thus the generated
	EMF is added to the voltage of the external source. So the net voltage is
	high enough for a spark to form. This mechanism has been used, for
	example in spark plugs of the car engines.
Integrated circuit	In integrated circuits, a semiconducting substrate (called <i>wafer</i>), usually
(microchip)	made from silicon is covered with nanoscale layers of some conducting
Is a set of electronic circuits	metals and dielectric materials. These layers can be used to construct the
consisting of p-n junctions,	components of the circuits. For example an area of two layers of
capacitors and resistors on a	conducting materials with a dielectrics in between forms a tiny capacitor.
small flat piece of	Placing all the elements on the same substrate creates a similar working
semiconductor material.	temperature for the all components. Also the cost and power consumption
	of the microchips is greatly reduced in comparison with the circuit
	consisting of separated components. An integrated circuit uses less material
	and less power. Integrated circuits are ubiquitous in modern electronics.

Laser is a device that emits	Working principle of a laser is based on: a) the inversion created in the
light based on the stimulated	quantum system and b) use of the optical cavity. The inversion means that
emission of electromagnetic	the higher energy level is occupied more probably than the lower levels.
radiation, e.g photons with	There are a lot of particles ready to emit light quanta with certain
the same frequency, phase	properties. In the lasers, the system generating the inversion called the
and polarization.	pumping system, should be always in use. An optical cavity is an
	arrangement of mirrors that forms a standing wave. Light confined in the
	cavity reflects multiple times on the mirrors producing standing waves for
	certain resonance frequencies. So the probability for generating a twin for
	some photon always existing in the cavity, is enhanced.
Light emitting diode (LED)	Light emitting diode (LED) is a forward biased PN junction which
is a device that creates visible	generates light using the energy of electric field PN junction is the region
light from electrical energy	in the semiconductor where n-conducting and n-conducting parts are in
nght from electrical chergy.	contact. In n-conducting part, the dominating charge carriers are (negative)
	electrons. In the p-conducting part the dominating charge carriers are (negative)
	holes. In the case of forward bigging, the positive pole of outer voltage
	source is connected to the p conducting part of somiconductor, and the
	source is connected to the p-conducting part of semiconductor, and the
	algorithm field concerned by the source is bringing the electrons and holes
	electric field generated by the source is bringing the electrons and noies
	together. when an electron meets the hole, then the hole is filled by the
	electron and the energy of electron-hole pair is transmitted to the generated
T • • • • • • • •	
Liquid crystal display	In the LCD display, light is usually generated by LEDs. The generated light
(LCD) The liquid crystal	is polarized and sent through a thin layer of liquid crystal molecules, which
display is one the most used	are sandwiched between two transparent conducting sheets. The light
display types, because it has	passes the liquid crystal only when the axis of the crystals are aligned with
smaller power consumption	the plane of polarization of the passing light. The alignment of the liquid
and is made of relatively	crystal molecules can be changed by applying a voltage on the conducting
cheap materials.	sheets, thereby allowing to change the brightness of individual pixels.
Luminous efficacy is a	Luminous efficacy is ratio of luminous flux of a light source to consumed
measure of how well a light	electrical power, measured in lumens per watt. The maximal value of the
source produces visible light.	luminous efficacy is 683 lm/W. It is an luminous efficacy of a light source
Its maximal theoretical value	that converts all consumed electrical power into monochromatic light at a
is lm/W (fill the gap!)	frequency of 540 THz, on which the human eye responds best. The efficacy
Luminous efficacy greately	of real light sources is much lower: 10-15 lm/W for incandescent lamp, 20-
differs for different light	35 lm/W for halogen lamp, 50-100 lm/W for a fluorescent lamp, 50-150
sources.	lm/W for a LED lamp, and up to 200 W/lm for a gas discharge lamp.
Magnetic crane: Scrap metal	A magnetic crane works as an electromagnet. As iron is a ferromagnetic
is separated by a magnetic	material, it will be strongly magnetized in the magnetic field created by the
crane, which attracts scrap	electromagnet, which causes attraction between the metal scraps and the
iron or steel, but not copper.	magnet. No such effect can be seen in the case of copper, because copper is
	is diamagnetic material and is effected only slightly by the electromagnet.
Magnetic memory: The	The hysteresis loop of a magnetic memory material is wide and has a large
material used in a magnetic	area. The area of the hysteresis loop is equal to the work done per unit
memory device is not suited	volume for one cycle of magnetization. An electromagnet made of a
to be used as the core of a	magnetic memory material would exhibit high energy losses, would be
transformer or an	hard to control due to wide hysteresis loop and would exhibit a non-linear
electromagnet.	B = f(I) -dependence (output voltage of a transformer would not be
e	proportional to the input voltage).
Measuring transformer: An	A clamp meter or a current probe is an electrical device for measuring the
electrician checks a	current without an electrical contact with the wire. It consists of two
suspisious wire with a clamp	conducting and ferromagneticiaws" which clamp around the wire. This
meter.	creates a magnetic circuit, where a periodically changing magnetic flux is
	created. This in turn creates an alternating current through the secondary
	winding, which can be measured.
L	

Metal detector cannot be	The main component of a metal detector consists of an oscillator creating
used by archaeologists to	an alternating current that passes through a coil producing an alternating
search for bones, ceramics or	magnetic field. If a piece of electrically conductive metal is close to the
thoroughly corroded metal	coil, eddy currents will be induced in the material. This causes the current
objects.	through the coil to suddenly drop, as energy is released as heat in the
5	material. This method is applicable to search for conducting materials
	only, as a non-conducting material does not allow for high enough eddy
	currents to be induced.
MOSFET: The gate	The positive gate electrode acts to draw the minority charge carriers of the
electrode of the MOSFET	semiconductor near the gate electrode, creating a conducting channel
must be separated from the	between the source and drain contacts. The dielectric layer between the
semiconducting material by a	gate and the substrate must be thin and must have a high permittivity, so
thin layer of dielectric	that the capacitance of the capacitor consisting of the gate electrode and
material possessing a high	semiconducting substrate would be as high as possible and a greater charge
relative permittivity.	could be attracted into the conducting channel by a smaller voltage.
Old battery:	The internal resistance of an old battery is large, because almost all of the
A radio with an old battery	reactants have been used up and the products of the reaction disturb the
works quieter. If it is turned	directed motion of the charge carriers. If the internal resistance is large,
off and then on again, it will	only a small current can be drawn from the battery. If the radio is turned off
work louder for some time.	for some time, the products of the chemical reaction can diffuse away.
	which lets the reaction to proceed. Understandably, this will only last for
	some time.
Piezoelectric sensors	Piezoelectricity is the generation of electric charge of some types of
produce an electric signal in	materials due to external stress or force exerted on the material. The
response to a force.	converse piezoelectric effect is the changing of the dimensions of a material
piezoelectric actuators use	due to an external voltage. Due to the applied mechanical stress, positive
the reverse effect to very	and negative ions in the material are displaced in opposing directions.
accurately change the	thereby changing its polarization, which induces the surface charges. The
dimensions of some detail.	magnitude of this displacement and therefore also the created electric field
	are proportional to this displacement.
PN junction : In the case of	In the case of forward bias, the positive terminal of the voltage source is
forward bias, a PN junction	connected to the p-type side of the PN junction and the n-type side is
conducts electricity, but in	connected with the negative terminal. The electric field created by the
the case of reverse bias it	external voltage source pushes the holes in the p-type region and the
does not.	electrons in the n-type region toward the junction, which start to neutralize
	the depletion region, reducing its width until to zero. So the PN junction is
	opened. In the case of reverse bias, the positive terminal of the voltage
	source is connected to the n-type side and the negative terminal is
	connected to the p-type side of the PN junction. The width of the depletion
	region or length l in the formula of its resistance $R = \rho l/S$ increases and
	so the PN junction remain closed
Power line : high voltage is	Increasing the voltage allows to decrease the electrical current for the same
used to transfer electrical	transmission power as $P = I U$. The losses due to heating in the power line
power, although from the	can be calculated as $P = I^2 R$, so that decreasing the current also decreases
formula $P = U^2/R$ it could	the losses. High transmission voltage means a high voltage between the
be reasoned, that increasing	power line and ground. The voltage in the formula for losses $P = U^2/R$ is
the power increases the	the voltage between the ends of the power line. This voltage is made so low
nowar losses	as possible using low resistance transmission wires
DOWELIOSSES	

Quartz clock:	Quartz is a piezoelectric material, that is when a quartz crystal is subjected
A quartz lock uses an	to the mechanical stress, such as bending, it creates a voltage between its
electronic oscillator that is	ends. Also reversely, if a voltage is applied, the dimensions of the quartz
regulated by a quartz crystal	crystal will change, with so-called reverse piezoelectric effect. The quartz
to keep time.	crystal is oscillating, the dimensions and the mass of the crystal determine
	its frequency and period. The time is measured as the certain number of
	neriods. The losses are compensated by electrical energy from battery of
	the clock
Rectifier is a device that	Half-wave rectifier requires only a single semiconductor diode (one PN
converts alternating current	iunction) which permits current to flow during the half-period of positive
(AC) to direct current (DC)	yaltaga, when the diada is forward biased. In the other half period when
Full wave rectifier does so	the diode is reverse biased, no current will flow. Modern rectifiers are full
more efficiently then a helf	wave reactifiers. This davice reverses the direction of the current during the
more enforcemently than a nan-	wave fectifiers. This device reverses the direction of the current during the
wave recurrer.	negative han-period and typically requires 2 of 4 diodes. For the two diode
	diada during the other half neried. In case of 4 diada actum the diada are
	and a during the other nan-period. In case of 4 diode setup, the diodes are
	set in a bridge configuration where 2 diodes permit current to flow during
	the positive half-period and 2 for the negative half-period.
Refrigerator and the heat	A refrigerator is a device to produce low temperatures in some local region.
pump:	Heat is drawn from the interior of the device by the means of the refrigerant
Does the freezer and the heat	to the radiator, where it is dissipated as heat to the surroundings. A heat
pump violate the second law	pump is is a device to extract heat from the colder environment to heat the
of thermodynamics?	inner, warmer one. Both the refigerator and the heat pump allow heat to
	flow from the region with lower temperature to the one with higher
	temperature, but only by doing mechanical work. The entropy of the cooled
	region decreases, while the temperature of the hotter one increases by a
	larger amount. The total entropy of the whole world increases, so the
	second law of thermodynamics is satisfied.
Security gate at an airport	Security gate consists of an oscillator producing an alternating current,
reacts to some metal object	which passes through a coil which produces an alternating magnetic field.
on a person.	If a conducting body is brought close to the coil, eddy currents will be
	induced in the body, which create a magnetic field of its own. Another coil
	can be used to measure this magnetic field. Another possibility is to
	measure the energy loss caused by the eddy currents because they convert
	the electric energy into the thermal energy. Non-conducting object cannot
	be detected by this method, as no eddy currents are induced in a non-
	conducting body.
Scanning electron	To scan means to direct a finely focused beam of light or electrons in a
microscope (SEM) is a type	systematic pattern (in serial way) over a surface in order to reproduce or
of electron microscope that	sense and subsequently transmit an image. The electrons interact with
produces images of a sample	atoms in the sample, producing various signals that contain information
by scanning it with a focused	about the surface topography of sample and its composition. The electron
beam of electrons.	beam is generally scanned in a raster scan pattern, and the information
	considering the beam's position is combined with the detected signal to
	produce an image. SEM can achieve resolution better than 1 nanometer.
Scanning tunnelling	The STM is based on the concept of quantum tunnelling. Tunnelling is the
microscope (STM) is an	quantum mechanical phenomenon where an object is going through a
instrument for imaging	barrier not penetrable according to the classical mechanics. When a
surfaces at the atomic level.	conducting tip is brought very near to the surface to be examined, a voltage
	applied between the tip and the surface can allow electrons to tunnel
	through the vacuum between them. The resulting tunneling current is a
	function of tip position, applied voltage, and the local density of electronic
	states of the sample.

Semiconductor lasers and	Semiconductor laser is a semiconductor LED, which is placed inside an
LEDs are most commonly	optical cavity. The energy of the photon emitted by a laser or LED is
made of gallium-arsenide-	roughly equal to the width of the band gap of the semiconductor E_{o} . This is
phosphide GaAsP (red LED)	the minimal energy required to create an electron-hole pair. The electron-
or gallium nitride GaN (white	hole pairs recombine in the forward-biased pn junction, emitting photons.
LED).	For gallium-arsenide (GaAs) $E_a = 1.35$ eV, gallium phosphide (GaP) 2.24
,	eV. In case of a mixture (GaAs _x P _{1,x}) E_a can be tuned between those two
	values. In the case of GaN the band gap is 3.4 eV which makes violet (405
	nm) LED possible. This violet light is used as an exciting radiation for
	photoluminescent LED lamps emitting the white light
Solar cell is an electrical	Solar cells operate by converting the energy of light into electrical energy
device, that converts the	through the photovoltaic effect. The cell contains a p-n junction where the
energy of light directly into	incoming photons excite the electrons to create electron-hole pairs. Due to
electrical energy	the electric field of the junction these created electrons and holes will drift
checuleur chergy.	in the opposing directions $-$ electrons toward the n region and holes toward
	the pregion Only photons whose energy is greater than the hand gap of the
	semiconductor will create electron-hole pairs. If the energy of the photon is
	greater than the hand gap, the rest is absorbed as heat
Thermal electromotive	The contact potential difference, also called the Volta potential is the
force is the temperature	electrostatic potential difference between two metals that are in contact
dependent electrical potential	This potential difference is created by the difference of work functions
difference (voltage) produced	between those two metals. Thermal electromotive force is created in a
between two junctions of two	closed circuit if the contacts are held at different temperatures. The created
dissimilar metals	voltage is proportional to the temperature difference between the contacts.
	This allows to measure the temperature difference of the contacts
Thermistor [.] The electrical	Semiconductor thermistors are commonly used at temperatures, where the
resistance of a semiconductor	thermal energy excites an electron from the donor or a hole from the
thermoresistor (thermistor)	acceptor. This increases the concentration of charge carriers and the
rapidly diminishes with	resistivity $\rho = m/\tau a^2 n$ is decreased. At a higher temperature, the
increasing temperature	intrinsic conductivity of the semiconductor (the thermal creation of the
This allows a thermistor to be	electron-hole pairs in it) can be used for the same purpose
used to measure temperature.	cicerton note parts in it) can be used for the same purpose.
Thermocouple: A	In the case of thermocouple, the thermoelectric effect is used to measure
millivoltmeter which is	the temperature. Two dissimilar metals form a closed circuit with two
connected to the wires of an	electrical junctions, which are held at different temperatures. A thermal
experimental device is used	electromotive force in the order of 0.1 mV/K is created in the circuit.
to measure the temperature of	Unfortunately, the created voltages are normally too low for producing of
the device.	electrical energy, but they are sufficient for measuring the temperature.
Tuning : The receiver of a	The antenna of a radio contains a resonant <i>LC</i> circuit. A resonant circuit is
television or radio programs	an electrical circuit consisting of an inductor and a capacitor. A resonant
is tuned to receive the signal	circuit periodically tranforms the energy of the electric field of the
of a particular station.	capacitor into the magnetic field energy of the inductor. A large current
1	can be generated in the circuit if the antenna receives an electromagnetic
	wave possessing the same frequency as the resonant frequency of the
	circuit ω_r . To tune to a certain channel, the resonant frequency
	$\omega_{\rm r} \approx 1/\sqrt{LC}$ is changed by changing the capacitance C.
Varican: The canacitance of	A varican diode is a semiconducting device, which consists of one reverse-
a capacitor in the resonant	biased PN junction. The amount of reverse bias voltage controls the
circuit of a modern radio is	thickness of the depletion zone. So the distance between the plates" of the
varied by changing the	capacitor or the length l of the non-conducting area is changed. The
voltage.	capacitance C is inversely proportional to the distance l between the
	plates of the capacitor: $C = \varepsilon_0 \varepsilon_r A / l$