The differential equation of damped oscillations: $\quad x^{\prime \prime}+2 \beta x^{\prime}+\omega_{0}{ }^{2} x=0$
Its solution in the complex form (the complex deviation) is: $x=A(t) e^{i \omega t}$. The real deviation or coordinate $x=A \cos \omega t$ is the real part of the complex deviation.

We need to find the dependence of the amplitude $A(t)$ on time and the angular frequency ω.
So we take the first derivative according to the rule of differentiation of the product of two functions, which in our case are $A(t)$ and $e^{i \omega t}$:
$x^{\prime}=\mathrm{d} x / \mathrm{d} t=A^{\prime}$ (derivative of the 1 -st function) $\times e^{i \omega t}$ (the 2 -nd function) +
$+A$ (the 1 -st function) $\times e^{i \omega t}$ (derivative of the outer function) $\times(i \omega)$ (derivative of the inner function).
The second derivative: $x^{\prime \prime}=A^{\prime \prime} e^{i \omega t}+A^{\prime} e^{i \omega t}(i \omega)+A^{\prime} e^{i \omega t}(i \omega)+A e^{i \omega t}(i \omega)(i \omega)=$ $=A^{\prime \prime} e^{i \omega t}+2 i \omega A^{\prime} e^{i \omega t}-\omega^{2} A e^{i \omega t}$

Now we substitute the derivatives into the initial equation:
$A^{\prime \prime} e^{i \omega t}+2 i \omega A^{\prime} e^{i \omega t}-\omega^{2} A e^{i \omega t}+2 \beta A^{\prime} e^{i \omega t}+2 i \omega \beta A e^{i \omega t}+\omega_{0}^{2} A e^{i \omega t}=0$
$A^{\prime \prime}+2 i \omega A^{\prime}-\omega^{2} A+\underset{\text { terms from } \mathrm{d} x / \mathrm{d} t=x^{\prime}}{2 \beta}+\underset{\text { terms from } \mathrm{d}^{\prime} x / \mathrm{d} t^{2}=x^{\prime \prime}}{2 \beta} \quad+\omega_{0}^{2} A=0$
and we get the equation $A^{\prime \prime}+2 \beta A^{\prime}+\left(\omega_{0}^{2}-\omega^{2}\right) A=0$ for the real part
and $\quad 2 i \omega A^{\prime}+2 \beta A i \omega=2 i \omega\left(A^{\prime}+\beta A\right)=0 \quad$ for the imaginary part
The trivial solution is: $\omega=0$ and the non-trivial one is: $\boldsymbol{A}^{\prime}+\boldsymbol{\beta} \boldsymbol{A}=\mathbf{0}$
We get $A^{\prime}=-\beta A \quad$ or $\quad \mathrm{d} A / \mathrm{d} t=-\beta A \quad$ or $\quad \mathrm{d} A / A=-\beta \mathrm{d} t$.
Integrating this gives us the equation: $\ln A=-\beta t+\mathrm{const}$
The initial condition: const $=\ln A_{0} \quad$ where $\quad A_{0}=A(t=0)$
Alltogether we have: $\ln A-\ln A_{0}=-\beta t \quad$ or $\quad \ln \left(A / A_{0}\right)=-\beta t$
We take the antilogarithm and so we get : $A / A_{0}=e^{-\beta t} \quad$ or $\quad A=A_{0} e^{-\beta t}$
$A^{\prime}=-\beta A_{0} e^{-\beta t}=-\beta A$
$A^{\prime \prime}=(-\beta)(-\beta) A_{0} e^{-\beta t}=\beta^{2} A$
We substitute these derivatives into the equation for the real part:
$A^{\prime \prime}+2 \beta A^{\prime}+\left(\omega_{0}^{2}-\omega^{2}\right) A=0$
and so we get

$$
\beta^{2} A+2 \beta(-\beta A)+\left(\omega_{0}^{2}-\omega^{2}\right) A=0
$$

or dividing by A :

$$
\beta^{2}-2 \beta^{2}+\omega_{0}^{2}-\omega^{2}=0,
$$

or

$$
-\beta^{2}+\omega_{0}^{2}-\omega^{2}=0 \quad \text { or } \quad \omega^{2}=\omega_{0}^{2}-\beta^{2}
$$

