Estimation of measurement uncertainty in chemical analysis (analytical chemistry)

Ivo Leito

University of Tartu Institute of Chemistry 2013

Measurement uncertainty by the modeling approach:

Determination of NH₄+ in water

- · A dye (photometric complex) is formed quantitatively from NH₄+ and its absorbance is measured at 640-660 nm by a photometer
- · The concentration of ammonium nitrogen is found from calibration graph

Step 1 – defining the measurand

Measurand = The quantity intended to be measured

Our measurand:

Concentration of NH₄⁺ expressed as ammonium concentration C_{N_sample} mg/l in the water sample

Step 2 - Model

Model is the equation which enables calculating the measurand (output quantity Y) value from the values of directly measured quantities (input quantities $X_1 ... X_n$):

$$Y = f(X_1, X_2,, X_n)$$

Model:

$$-\frac{(A_{\text{sample}}-b_0)}{(A_{\text{sample}}-b_0)} \times f + \Delta C$$

 $C_{\text{N_sample}} = \frac{(A_{\text{sample}} - b_0)}{b_1} \times f_{\text{d}} + \Delta C_{\text{dc}}$

Step 2 - Model

- A_{sample} absorbance of the dye solution obtained from the sample
- b_1 and b_0 slope and intercept of the calibration graph
- $f_{\rm d}$ dilution factor
- ΔC_{dc} component taking into account uncertainty originating from possible decomposition or contamination

Example of measurement uncertainty estimation by the ISO GUM modeling approach: *determination of NH4+ by photometry*

- All possible uncertainty sources need to be considered
 - The important ones need to be accounted for
 - This can be done individually or by grouping
- For this the source has to be linked with some input quantity in the model
- If an important uncertainty source exists that cannot be linked with any input quantity then the model has to be modified

Quantity	Value	Unit
A _{sample}	0.1860	AU*
b ₀	0.0171	AU*
b ₁	0.9808	AU×I/mg
f_{d}	1.2500	-
Δ C _{dc}	0.0000	mg/l

Example of measurement uncertainty estimation by the ISO GUM modeling approach: determination of NH4+ by photometry

Step 5 – Standard uncertainties of the input quantities: A_{sample}

Absorbance of the sample solution A_{sample}:

$u(A_{\text{sample}}, \text{rep}) =$	0.0010 AU
$u(A_{\text{sample}}, \text{drift}) =$	0.0012 AU
$u(A_{\text{sample}}, \text{chem}) =$	0.0030 AU

$$u(A_{\text{sample}}) = \sqrt{\frac{u(A_{\text{sample}}, \text{rep})^2 + u(A_{\text{sample}}, \text{drift})^2}{+ u(A_{\text{sample}}, \text{chem})^2}} = 0.0034 \,\text{AU}$$

13

Step 5 – Standard uncertainties of the input quantities: b₀ and b₁

 Standard deviations of b₀ and b₁ as found from regression statistics are used as standard uncertainty estimates

$$u(b_0) = 0.0025 \text{ AU}$$

 $u(b_1) = 0.0046 \text{ AU} \times \text{I/mg}$

This is an approximation!

1.1

Step 5 – Standard uncertainties of the input quantities: f_d

- The standard uncertainty of dilution factor is estimated here as 0.5% of the dilution factor value
- This is a safe estimate if volumetric operations are performed correctly

$$u(f_{\rm d}) = 1.25 / 200 = 0.0063$$

15

Step 5 – Standard uncertainties of the input quantities: ΔC_{dc}

 The possible contribution of decomposition or contamination at this concentration level is estimated from the experience of the laboratory as follows:

$$u(\Delta C_{dc}) = 0.004 \text{ mg/l}$$

16

Step 5 – Standard uncertainties of the input quantities: summary

 The uncertainties of the input quantities have to be used as standard uncertainties (u)

Quantity	Value	и	Unit
A _{sample}	0.1860	0.0034	AU
\boldsymbol{b}_0	0.0171	0.0025	AU
b ₁	0.9808	0.0046	AU×I/mg
f_d	1.2500	0.0063	_
ΔC_{dc}	0.0000	0.0040	mg/l

Step 6 - Calculating the measurand value

$$C_{\text{N_sample}} = \frac{(A_{\text{sample}} - b_0)}{b_1} \times f_{\text{d}} + \Delta C_{\text{dc}}$$

$$C_{\text{N_sample}} = \frac{(0.1860 - 0.0171)}{0.9808} \times 1.25 + 0$$

$$C_{\text{N sample}} = 0.215 \text{ mg/l}$$

18

Step 7 – Finding combined standard uncertainty (1)

In the case on non-correlating input quantities:

$$u_{c}(y) = \sqrt{\left[\frac{\partial Y}{\partial X_{1}}u(x_{1})\right]^{2} + \left[\frac{\partial Y}{\partial X_{2}}u(x_{2})\right]^{2} + \dots + \left[\frac{\partial Y}{\partial X_{n}}u(x_{n})\right]^{2}}$$

 $u_{\rm c}(y)$ = combined standard uncertainty of the output quantity $u(x_i)$ = standard uncertainties of the input quantities

19

Step 7 – Finding combined standard uncertainty (2)

$$u_{c}(C_{N_sample}) = \begin{cases} \left[\frac{\partial C_{N_sample}}{\partial A_{sample}} u(A_{sample})^{2} + \left(\frac{\partial C_{N_sample}}{\partial b_{0}} u(b_{0})\right)^{2} + \left(\frac{\partial C_{N_sample}}{\partial b_{1}} u(b_{1})\right)^{2} + \left(\frac{\partial C_{N_sample}}{\partial b_{1}} u(b_{1})\right)^{2} + \left(\frac{\partial C_{N_sample}}{\partial \Delta C_{dc}} u(\Delta C_{dc})\right)^{2} \end{cases}$$

20

Step 7 – Finding combined standard uncertainty (3)

$$u_{c}(C_{N_{sample}}) = \sqrt{\frac{(0.00429)^{2} + (-0.00324)^{2} + (-0.0010)^{2}}{+(0.00108)^{2} + (0.00400)^{2}}}$$

 $u_{\rm c}(C_{\rm N_sample}) = 0.00686 \text{ mg/l}$

21

Step 8 - Finding expanded uncertainty

- Expanded uncertainty ${\it U}$ is found by multiplying ${\it u}_{\rm c}$ with coverage factor ${\it k}$
 - Very often k = 2, which in the case of normal distribution corresponds to ca 95% probability

$$U = 0.00686 \times 2 = 0.014 \text{ mg/l}$$

Result:

$$C_{\text{N_sample}} = (0.215 \pm 0.014) \text{ mg/l}$$

 $k = 2$

22

Step 9 – Contributions of uncertainty sources

Uncertainty contributions (indexes) are found as follows:

$$Index(x_1) = \frac{\left[\frac{\partial Y}{\partial X_1} u(x_1)\right]^2}{\left[\frac{\partial Y}{\partial X_1} u(x_1)\right]^2 + \left[\frac{\partial Y}{\partial X_2} u(x_2)\right]^2 + \dots + \left[\frac{\partial Y}{\partial X_n} u(x_n)\right]^2}$$

24

Example of measurement uncertainty estimation by the ISO GUM modeling approach: determination of NH4+ by photometry