Accuracy and measurement uncertainty

Section 7

Random effect

How does measurement uncertainty fit to this picture?

Which method is more accurate?

If uncertainy is acceptable to the customer then method is OK.

Method is not accurate enough and the uncertainty estimation should be reviewed.

Which method is more accurate?

Less accurate

More accurate

Uncertainty estimation approaches

Based on modelling

Uncertainty data of many parameters are used

Rigorous but work-intensive and needs competence

Based on validation data

Intermediate precision and long-term bias data are used

Less rigorous but easy to apply in a routine lab

Using validation data for uncertainty

Effects contributing to uncertainty

Random

Systematic

$$u_{c} = \sqrt{u_{1}^{2} + u_{2}^{2}}$$

Uncertainty from longterm random effects Uncertainty accounting for long-term bias

There is a Dedicated MOOC for measurement uncertainty:

Estimation of measurement uncertainty in chemical analysis

https://sisu.ut.ee/measurement/