Design of amino acid

DERIVATIZATION REAGENTS

for LC-ESI-MS/MS.

Development and validation of derivatization LC-ESI-MS/MS method for amino acids at subfemtomole level

Methods

- · design of reagent targeting high ionization efficiency, chromatographic retention and reactivity,
 - · synthesis and purification,
 - · matrix effect investigation,
- derivatization procedure optimization
 - method validation (VaLChrom).

LC-ESI-MS AMINO ACID DERIVATIZATION REAGENTS

- provide good reversed phase chromatographic separation,
- provide low detection limits, are easily synthesized
- produce derivatives which are less susceptible to matrix influences
 - · have convenient derivatization procedure with stable derivatives suitable for automatization.

NOVEL DERIVATIZATION REAGENTS

Toomas Rodima, Agnes Kütt

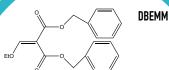
- · should not carry a permanent charge in solution
- for efficient ESI ionization, should be able to chelate the charge carrier (H+ or Na+)
- for efficient ESI ionization should be large (hydrophobic).

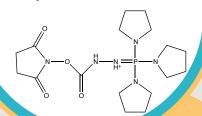
FMOC-CI

DEEMM

DBEMM

DNS


Limit of Quantifications


		DEEMM	FMOC-	DNS	TAHS	FOSF	DBEMM	ЕВЕММ
			CI			С		
	Arg	84	259	365	81	·	0.26	3.1
	Asp	154	943	ь	117	96	1.7	3.4
	Gly	384	3615	3887	61	168	9.1	42
	β-Ala	227	1687	377	101	54	1.6	20
	Pro	a	174	1381	31	130	2.5	34
	Trp	53	164	55	92	7	0.8	63
	Phe	26	193	252	22	41	0.7	6.9

- a Pro was unstable for DEEMM analysis and not added to the
- comparison.

 b the signal of Asp was not obtained for DNS analysis the signal of Arg for FOSF was not stable and LoD val

- One step synthesis Attomole level detection limits for selenoamino acids
- Good chromatographic separation
 Fast reaction, HFIP buffer
- suitable for automatization
- No matrix effect for onion samples Wide linear range

FOSF

- Novel for LC-ESI-MS/MS
- Multiple step synthesis
 Fast derivatization reaction
- Suitable for real samples
 Poor chromatographic separation
- Narrow linear range Femtomole level detection limits for amino acids

Results

Design principles for LC-ESI-MS/MS derivatization reagents were set

- Two novel derivatization reagents were designed, synthesized and validated
 - FOSF and DBEMM

Acknowledgement

This work was supported by the project "Development of software for validation of chromatographic methods" (with registration number 3.2.1201.13-0020) under the sub-measure "Supporting the development of R&D of info and munication technology" funded by the EU Regional Development Fund.

References

Matrix effects in onion samples

Se-MeSeCys 22%