

Ten years of webbased teaching what have we learned?

Ivo Leito ivo.leito@ut.ee

Н

sisu.ut.ee/measurement sisu.ut.ee/lcms_method_validation

www.analyticalchemistry.eu

28.06.2023 Eurovariety 2023

E

Tartu

Co-funded by the

Erasmus+ Programme

of the European Union

Questions we will discuss

To what extent can a web course be a substitute for face-to-face teaching?

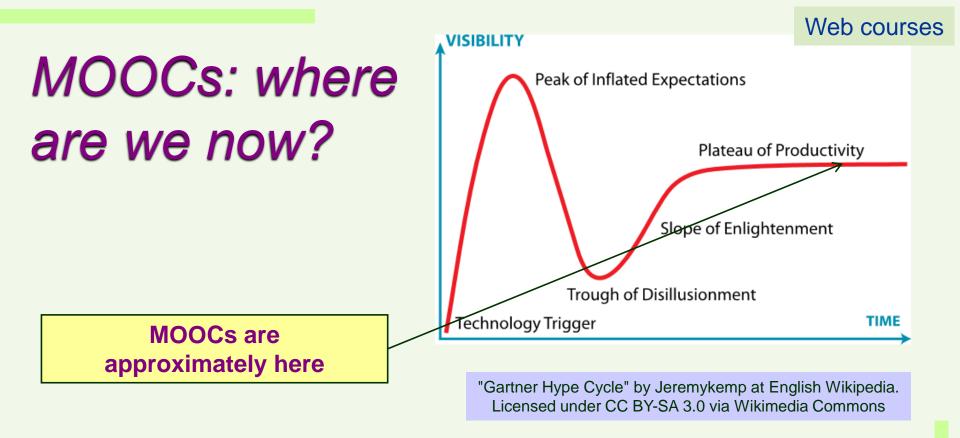
Web courses

- Massive Open Online Courses (MOOCs)
- Lessons learned from running an international master's programme?
 Joint MSc programme
- Was the COVID pandemic only bad?
- Please ask questions at any moment

Web courses

Massive Open Online Courses

- Term coined in 2008

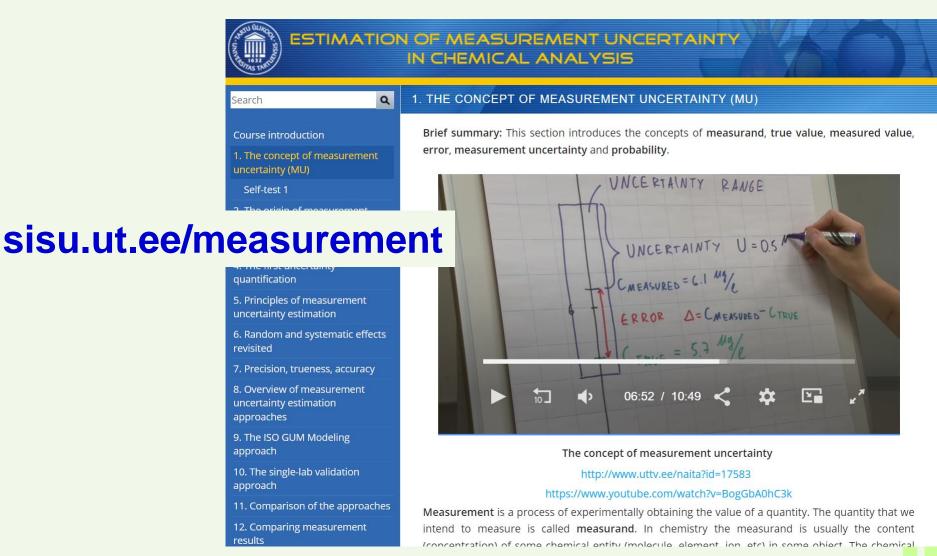

 by D. Cormier and G. Siemens
- MOOCs were hailed as the future of higher education
 - 2012: "Year of the MOOC" by NYT

Cormier D (2008) *The CCK08 MOOC – connectivism course, 1/4 way.* Available from Dave Cormier's blog. <u>http://davecormier.com/</u> edblog/2008/10/02/the-cck08-moocconnectivism-course-14-way/

Pappano L (2012) The year of the MOOC. *The New York Times*, Nov 2, 2012

- Since then, a lot of criticism
 - insufficient interaction between teachers and students, low course completion rates, etc
 - It is acknowledged that MOOCs were originally overhyped

28.06.2023 Eurovariety 2023



 Our experience: MOOCs have undoubted virtues

> I. Leito, I. Helm, L. Jalukse. *Anal Bioanal Chem* (2015) 407:1277–1281

Web courses

On-line course: Estimation of measurement uncertainty in chemical analysis

28.06.2023

Eurovariety 2023

Web courses

Teaching measurement uncertainty

Notoriously difficult +

It is usually taught at the level of basics but difficulties emerge first of all with practical applications

- Usually taught in connection with analytical chemistry
- Many guideline materials and courses
- Most training courses stop exactly at the moment when it gets "interesting"

Features

- Main measurement uncertainty concepts
- Two main uncertainty estimation approaches are discussed in depth and compared
- Video tutorials of uncertainty calculations
- Numerous **Practical examples**

sisu.ut.ee/measurement

Web courses

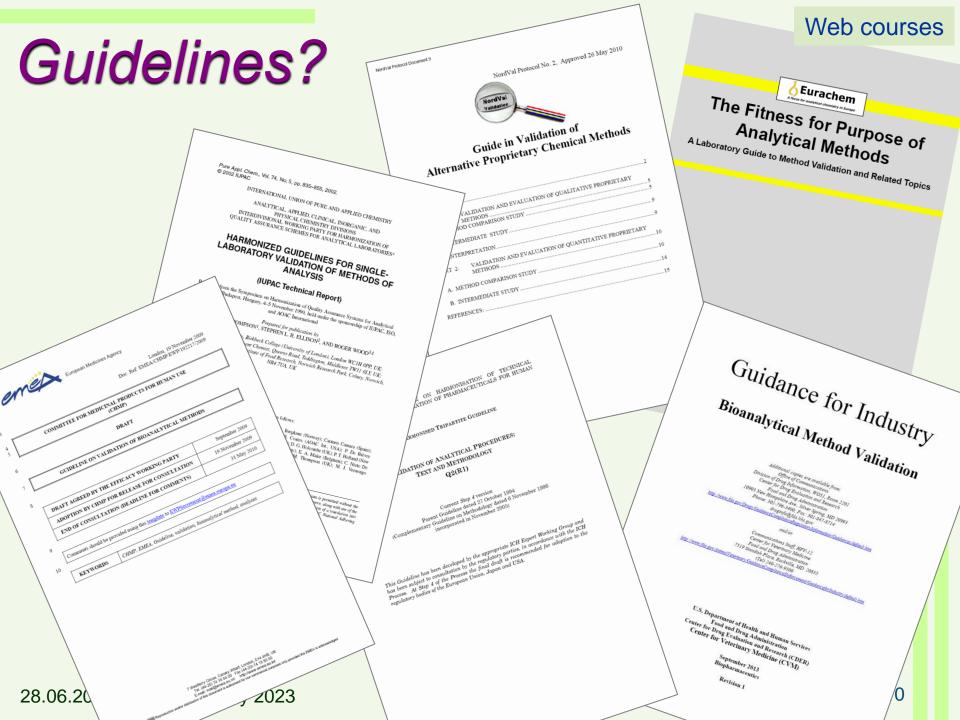
On-line course: LC/MS Method Validation

Validation of liquid chromat ×						
C O https://sisu.ut.ee/lcms_method_validation						
8M 🏆 Ivo 🎢 M OS U_MOOC OS V_MOOC 🏫 AK 🄜 A	xK 🗋 EACH 🏫 AMS 🏫 AKKI 🕋 Puhkused 🤳 GA M Gmail 🎦 EcoBalt 👌 Doodle 🚸 GP 📀 G 🎦 Radar 🗋 MudelPr 🚾 Ilm 📃 Other boo					
	Search Search					
	LC-MS METHOD VALIDATION					
Course introduction						
1. Validation: General 👻	1.1+08					
2. Selectivity and identity confirmation 👻	Trueness					
3. Linearity of signal, linear range, sensitivity ←	LC:MS Methode precision					
4. Precision 👻	e precision					
5. Trueness 👻	LoD Validation ^{oQ}					
6. Precision and trueness: some additional aspects 👻	Linearity Measurement uncertainty					
7. Accuracy 👻						
8. Stability 👻	RobusIntroduction					
9. LoD and LoQ 👻						
10. Ruggedness, robustness 👻	► 0:00 /2:23					
VaLChrom						
Acknowledgements	Course introduction					
References	http://www.uttv.ee/naita?id=23245					
Glossary	https://www.youtube.com/watch?v=jbdA8PnPdLY					
What our participants say?	Short description of the course					
	This is a practice-oriented on-line course on validation of analytical methods, specifically using LC/MS as technique. The course introduces the main concepts and mathematical apparatus of validation, covers the most important method performance parameters and ways of estimating them. The course is largely based on the recently published two-part tutorial review:					

28.06.2023

Eurov https://sisu.ut.ee/lcms_method_validation/

LC-MS as technique


 No 1 technique for determination of low levels of organics in difficult matrices

- Biomedical, environmental, "-omics", ...

- LC-MS: many adjustable parameters
 - In LC
 - In MS

Checking that the method performs as required is not trivial!

Validation is BIG in LC-MS!

Validation guidelines

- Guidelines are useful, but ...
 - Sometimes very general
 - How many replicates? Which spiking levels? How many days? ...
 - Sometimes different recommendations
 - Usually LC-MS is not addressed
 - Except e.g. 2002/657/EC, SANTE
 - Sometimes advanced calculations are required

Validation in LC-MS is not easy!

Features

- Main validation guidelines are reviewed and compared
 - With every performance parameter
- Recommendations are given how to determine performance parameters
 - Synthesis from guidelines and our experience
- Specific LC-MS issues
 - Ionization, matrix effects, MSⁿ selectivity, ...
- General workflow of LC-MS method validation is presented

28.06.2023 Eurovariety 2023 sisu.ut.ee/lcms_method_validation/ 12

Our goal with both courses

- Web-based teaching material for
 - Independent learning
 - Knowledge applicable in real-life situations
 - On-line reference point of explanations of concepts and approaches
 - Support for auditorial teaching of metrology in chemistry at UT
 - Offering as **MOOCs**
 - **Promoting** our analytical chemistry education

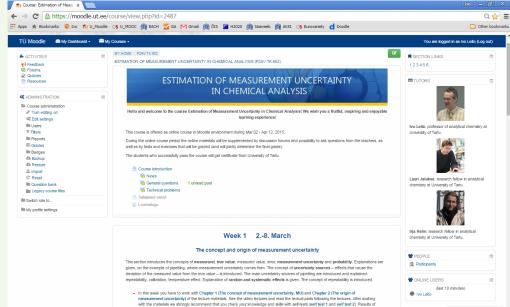
Course contents

- Theoretical basis as well as practical skills
- Detailed and example-based treatment
- Tens of short video lectures
 - Supplemented by textual explanations and downloadable slides and calculation files
- Numerous online tests and calculation exercises
 - Understanding of main concepts
 - Calculation exercises from real life situations
 - Feedback is given

Forums

I. Leito, I. Helm. Metrology in chemistry: some questions and answers. *J. Chem. Metrol.* **2020**, *14*, 83–87

Web courses


Platforms

• Course contents:

sisu.ut.ee/measurement sisu.ut.ee/lcms_method_validation

 Admin, forums, knowledge evaluation: moodle.ut.ee http://www.uttv.ee/naita?id=23308 Accounting for matrix effect

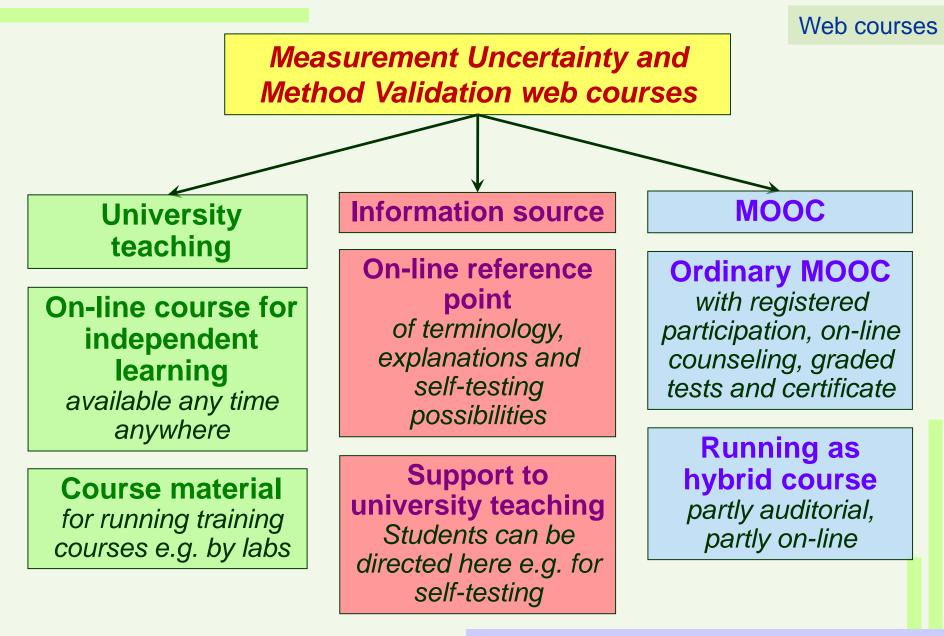
Uncertainty course completion statistics

	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
Registered participants	271	489	760	363	521	590	843	950	851	993	6631
Successfully finished	141	169	308	148	218	238	464	314	239	333	2572
Active participants	201	272	455	216	358	381	600	501	405	523	3912
Successfully finished %	52%	35%	41%	41%	42%	40%	55%	33%	28%	34%	39%
Participated %	74%	56%	60%	60%	69%	65%	71%	53%	48%	53%	59%
Successfully finished % (active participants)	70%	62%	68%	69%	61%	62%	77%	63%	59%	64%	66%
Number of countries	40	70	85	69	70	86	95	97	103	99	149

- Next edition: will start in March 2024
- Registration link will be in Jan 2024 at:

sisu.ut.ee/measurement

Validation course completion statistics


	2017	2018	2019	2020	2021	2022	2023	Total
Registered participants	303	424	426	515	791	850	903	4212
Successfully finished	168	159	125	161	221	209	218	1261
Active participants	224	236	227	267	338	380	376	2048
Successfully finished %	55%	38%	29%	31%	28%	25%	24%	30%
Participated %	74%	56%	53%	52%	43%	45%	42%	49%
Successfully finished % (active participants)	75%	67%	55%	60%	65%	55%	58%	62%
Number of countries	61	71	70	77	86	97	104	128

- Next edition: will start in Nov 2023
- Registration link will be in Sept 2023 at:

sisu.ut.ee/lcms_method_validation/

MOOCs vs "traditional" teaching

Aspect	Conventional university course	Practitioner training (short) course	моос	
Interaction between students and teachers	Direct	Direct	Remote	
Possibility to deliver the course simultaneously to many participants	Low	Low	High	
Level of self-discipline needed from participants	Average	Average	High	
Time constraints, time to "digest" the knowledge	Not a problem	Serious time constraints	Not a problem	
Possibility of independent homework	Possible	Usually impossible	Possible	
Possibility of hands-on problem- solving	Possible	Possible (within the time constraints)	Possible	
Possibility of teamwork	Possible	Possible (within the time constraints)	Not easy	
Possibility of experimental work	Easy	Possible, but not easy	Not possible	
Possibility of working with participants of uneven level or preparation	Difficult but doable	Difficult	Possible	
Possibilities of meaningful assessment of obtained knowledge	Wide possibilities	Difficult	Possible	
Danger of cheating during knowledge assessment	Can be made low	Can be made low	Can be high	
Costs of setting up the course ^a	Medium	Medium	Medium	
Costs of running the course ^a	High	High	Low	
Travel and accommodation costs	Can be high	Can be high	None	

I. Leito, I. Helm, L. Jalukse. Using MOOCs for teaching analytical chemistry: experience at University of Tartu. *Anal. Bioanal. Chem.* **2015**, *407*, 1277–1281

Co-funded by the Erasmus+ Programme of the European Union

Excellence in Analytical Chemistry

Started in 2015 by four European universities:

UPPSALA UNIVERSITET

Organic and bioorganic analysis, advanced separation methods, mass spectrometry

Fundamentals of analytical chemistry, metrology in chemistry, quality assurance, socio-economic aspects

Industrial analysis, process control and monitoring

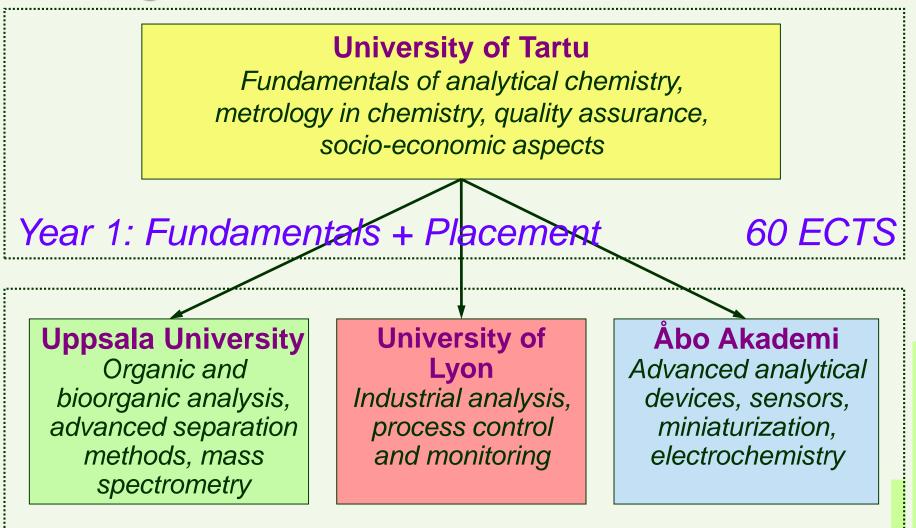
Advanced analytical devices, sensors, miniaturization, electrochemistry

28.06.2023 Eurovariety 2023

www.analyticalchemistry.eu

20

- Full-fledged contemporary analytical master degree programme (120 ECTS)
 - Highly international
- Tuned to the job market needs
 - Practical placement
 - Socio-economic aspects
 - Metrology topics


I. Leito, A. Teearu, J. Bobacka, J. Randon, J. Bergquist. EACH (Excellence in Analytical Chemistry), an Erasmus Mundus Joint Programme: progress and success. *Anal. Bioanal. Chem.* **2019**, *411*, 5913–5921

- "Research-grade" master's thesis

Funded by the EU's *Erasmus Mundus* scheme

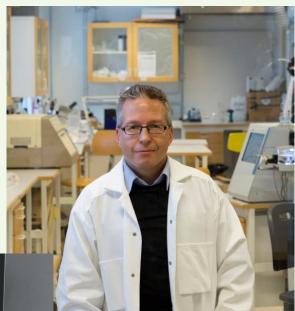
In most classes between 20 and 30 students

Programme structure:

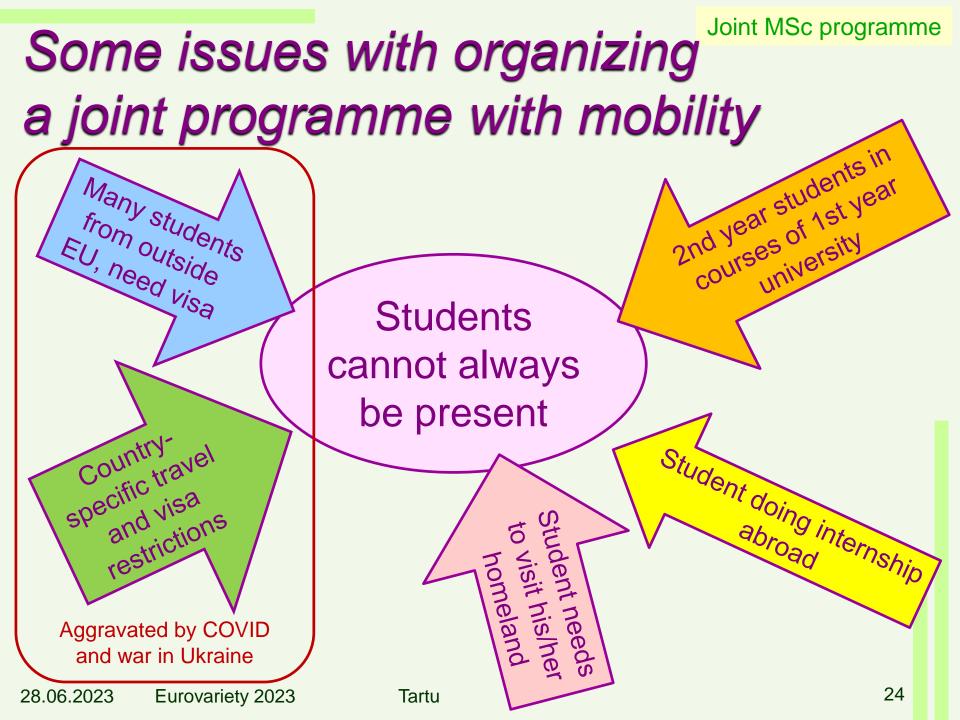
Year 2: Specialisation + Master's thesis

60 ECTS

EACH Academic leaders at second year universities


- Prof. Jonas Bergquist (UU)
 - A worldwide leader in biomedical LC and MS
- Prof. Jérôme Randon (UCBL)
 - Founder of the unique industrial analysis programme at Lyon

• Prof. Johan Bobacka (AAU)


 His work on electrochemical sensors is "probing" the future of analytical chemistry

www.analyticalchemistry.eu

COVID and analytical chemistry teaching in EACH

 The online infrastructure, experience and technical support were there before COVID

Many thanks to education technology people at UT!

- Helped to avoid big gaps
- Lectures and exams were run online
 Via Moodle/BBB
- Some (although limited) help for labs

- Lectures and seminars in hybrid mode
 - Illnesses, internships, mobility …
 - Somewhat more work
- More Polling during lecture
 - Engagement
 - Early discovery of problems
- Lectures recorded
 - Illnesses, internships, mobility ...
 - Some explanation may have been better last year

COVID's legacy?

COVID started several of these things

We still do all of them now!

Slides with a lot of missing information

- More engagement
- Good ideas

More on-line (self)tests

- Engagement
- Early discovery of problems

Oral exams

- More fair grading
- Limited possibilities for cheating
- Internships, mobility ...
- More work

28.06.2023 Eurovariety 2023

COVID's legacy?

Big thank you to the MOOC team!

Core team

Irja Helm, Lauri Jalukse, Anneli Kruve, Koit Herodes, Maarja-Liisa Oldekop, Riin Rebane, Karin Kipper, Hanno Evard

Video, design, IT, admin Enno Kaasik, Triin Marandi, Lehti Pilt, Esta Pilt, Toomas Petersell

Many thanks to the EACH team!

Jonas Bergquist, Jérôme Randon, Johan Bobacka, Ülle Tensing, Anu Teearu, Koit Herodes, Irja Helm, Sigrid Selberg, Martin Vilbaste, Hanno Evard, Erko Jakobson, Astrid Darnell, Magnus Strandås, Sofia Thorsélius, Heidi Karlsson, Dana-Maria Daia, Cinzia Cecchetto, Emilie Noguez, ...

Thanks to:

Co-funded by the Erasmus+ Programme of the European Union

Full information: www.analyticalchemistry.eu

Many thanks for your attention!

MOOCs' Top countries By number of participants:

Philippines 989 Poland 912 716 Estonia Brasil 551 361 Egypt 358 France Trinidad and Tobago 308 297 Spain Serbia 243 237 USA

153 countries overall