

Bridging the gap between Research in Science Education and Student Learning

Rachel Mamlok-Naaman*, Ron Blonder, Jack Holbrook Jari Lavonen and Miia Rannikmäe

> Weizmann Institute of Science University of Tartu University of Helsinki

*Rachel.Mamlok@Weizmann.ac.il

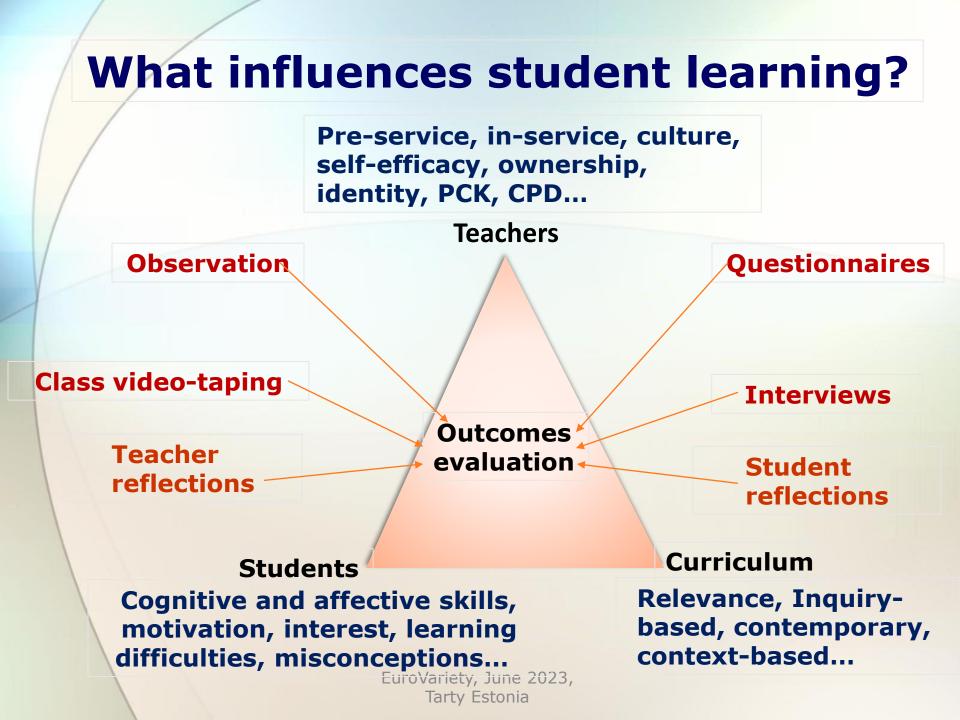
Outline

- Standards of science education
- The meaning of learning
- Aspects which influence student learning
 - Student characteristics
 - Types of curricula
- Components of science education
- An example of a project based on research in science education
- SciCar
- References

New Standards in Science Education

- The Content of Science that Every Student Should Learn
- The Pedagogy of Teaching Science
- The Assessment of Students
- Professional Development of Teachers
- Organization of Learning

National Research Council (2013)



EuroVariety, June 2023,

Learning

- The most conspicuous psychological influence on curriculum thinking in science since 1980 has been the constructivist view of learning (Fensham, 1992, p. 801)
- The students need to learn to cope with their life individually within the society in which they live and operate and also to participate actively in **societal discourse concerning socio-scientific issues (SSI)** (Roth & Lee 2004).

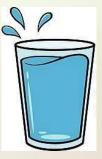
Stuckey, M., Heering, P., Mamlok-Naaman, R., Hofstein, A., & Eilks, I. (2015). The philosophical works of **Ludwik Fleck** and their potential meaning for teaching and learning science. *Science & Education*, 24(3), 281-298.

Students

- Cognitive and affective skills
- Motivation vs. learning difficulties
- Misconceptions and alternative conceptions
- Assessment methods
- Language
- Learning environment
- Cultural background

Langauge

Cultural diversity


Ruschenpohler, L., & Marcik, S. (2020). Secondary School Students' Chemistry **Self-Concepts: Gender, Culture, and the Impact on Learning Behaviour**. *CERP*, 21, 209-219

Science Language

H2**O** HIJKLMNO

HCHO (CH₂O) – Formaldehyde Sea Water

Curriculum

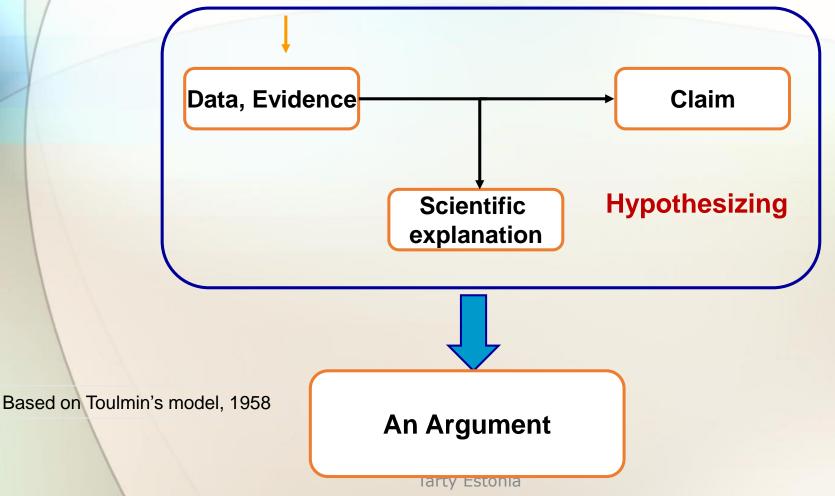
- Is it relevant to students' lives?
- Is it up-dated according to scientific and technological discoveries?
- Is it up-dated according to societal and economic changes?
- Does it enhance scientific and technological literacy?
- Does it increase students' interest and motivation to study science?
- Does it enhance students' interest in scientific careers? (Addressing Attractiveness of Science Career Awareness - SciCar)

How?

- Inquiry-type approach (asking questions, hypothesizing, drawing conclusions...)?
- Argumentation (focusing on discourse)?
- Context-based?
- Design-based?
- Socio-scientific issues based?
- Using a contemporary research-based, a historical approach, or both?
- Meeting scientists

How?

- Inquiry-type approach (asking questions, hypothesizing, drawing conclusions...)?
- Argumentation (Focusing on the discourse)?
- Context-based?
- Design-based?
- Socio-scientific issues based?
- Using a contemporary research-based, a historical approach, or both?
- Meeting scientists


Students Conducting the Inquiry-Type Experiments

Hofstein, A., Dkeidek, A., Katchevitch, A., Levy Nahum, A., Kipnis, M., Navon, O., Shore, R., Taitelbaum, D., & Mamlok-Naaman, R. (2019). Research on and Development of Inquiry-type Chemistry Laboratories in Israel. *Israel Journal of Chemistry, 59*, 1-11. DOI: 10.1002/ijch.201800056

Students Learn the Argument's Components in the Inquiry-type Experiments

Performing the experiment

How?

- Inquiry-type approach (asking questions, hypothesizing, drawing conclusions...)?
- Argumentation?
- Context-based?
- Design-based?
- Socio-scientific issues based?
- Using a contemporary research-based, a historical approach, or both?
- Meeting scientists

Context/design-based, need to know, socio-scientific driving questions

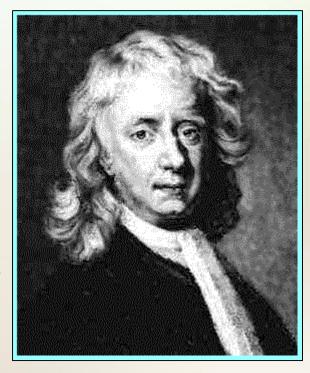
How can I design a cellular phone that is safer to use?

Radiation, Plastics, Sound, Disposal of batteries

- Mamlok-Naaman, R., Fortus, D., Dershimer, R.C., Krajcik, J., & Marx, R.W. (2005). How do I design a cellular phone that is safer to use? In: P. Nentwig and D. Waddington (Eds.). *Making it Relevant: Context-based Learning of Science* (215-241). Munster / New York / Munchen / Berlin: Waxmann.
- Krajcik, J., & Mamlok-Naaman, R. (alphabetical order). (2006). Using driving questions to motivate and sustain student interest in learning science.
 In: K. Tobin (Ed.). *Teaching and Learning Science: A Handbook* (317-327).
 Praeger, Westport, Connecticut, London.

.

How?


- Inquiry-type approach (asking questions, hypothesizing, drawing conclusions...)?
- Argumentation?
- Context-based?
- Design-based?
- Socio-scientific issues based?
- Using a contemporary research-based, a historical approach, or both?
- Meeting scientists

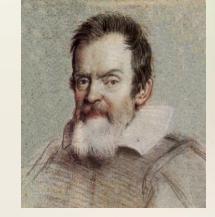
The role of history in school science programs

To know what something is today we have to learn about what it was like yesterday.

Chinese Daily Newspaper, 2002

Lavoisier

Research findings


- Students' initial scientific knowledge is analogous to the knowledge of scientists in the ancient world, and it is made up of observations and conclusions that are often intuitive.
- Children believe in what they sense and tend not to believe in what is out of the scope of their senses.

Thagard (1992); Irwin (1997); Erduran (2001); Mamlok-Naaman, et. al. (2005); Erduran, Aduriz-Bravo, & Mamlok-Naaman (2007).

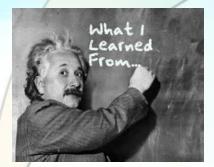
Using history and philosophy in school science programs, in order to promote a better understanding of:

- The nature of science (NOS)
- How is science generating evidence?
- How does science contribute to the development of students' skills in communication, evaluation and decision making?
 How do scientists develop their

scientific knowledge?

Galileo

SciCar: A 3 days international workshop on climate change in Israel: Research and Education, May 2023


- A visit at a research forest
- A research workshop

- Sustainability Flagship Weizmann
- Climate competencies of the Finnish youth
- Unpacking the connections between climate literacy and sense of place: A case study of an Israeli Bedouin Community in the Negev
- "Speak to Me in Numbers": Teaching SDGs and Developing Skills for Global Citizenship
- Climate Change in the Arctic: Visible & Invisible
- Disaster Psychology Understanding the Client: People

SciCar: Meeting scientists (job shadows), April 2023

What have we learned?

Akiri, E., Dori, Y.J. Professional Growth of Novice and Experienced STEM Teachers. *J Sci Educ Technol* (2021).

Blonder, R., & Mamlok-Naaman, R. (2019). Teaching Chemistry through Contemporary Research versus Using a Historical Approach. *Chemistry Teacher International (CTI),* open-access, 20180011. <u>https://doi.org/10.1515/cti-2018-0011</u>

Bolte, C., Streller, S., Holbrook, J., Rannikmae, M., Mamlok Naaman R., Hofstein, A., & Rauch F. (2011). *PROFILES: Professional Reflection-Oriented Focus on Inquiry based Learning and Education through Science*.

Chowdhury, TBM, Holbrook, J., Reis, P., & Rannikmae, M. (2021). Bangladeshi Science Teachers' Perceived Importance and Perceived Current Practices in Promoting Science Education Through a Context-Based, Socio-scientific Framework. Science & Education. DOI: 10.1007/s11191-021-00236-9.

Erduran, S. (2001). Philosophy of chemistry: An emerging field with implications for chemistry education. *Science & Education*, *10*, 581–593.

Erduran, S. (2003) Examining the mismatch between pupil and teacher knowledge in acid-base chemistry. *School Science Review*, 84(308), 81–87.

Erduran, S., Aduriz-Bravo, A., & Mamlok-Naaman, R. (2007). Developing Epistemologically Empowered Teachers: Examining the Role of Philosophy of Chemistry in Teacher Education: Science & Education, 16, 975-989.

- Fortus, D., Dershimer, R.C., Krajcik, J., Marx, R.W., & Mamlok-Naaman, R. (2004). Design-Based Science (DBS) and Student Learning. *Journal of Research in Science Teaching*, 41(10), 1081-1110.
- Herbert J. Walberg (1974) Learning models and learning environments, Educational Psychologist, 11, 102-109, DOI: <u>10.1080/00461527409529131</u>
- Hofstein, A., Dkeidek, A., Katchevitch, A., Levy Nahum, A., Kipnis, M., Navon, O., Shore, R., Taitelbaum, D., & Mamlok-Naaman, R. (2019). Research on and Development of Inquiry-type Chemistry Laboratories in Israel. *Israel Journal of Chemistry*, 59, 1-11. DOI: 10.1002/ijch.201800056
- Holbrook, J., Rannikmäe, M., Bolte, C., Hofstein, A., Mamlok-Naaman, R., Rauch, F., Streller, S., Keinonen, T. (2013). PROFILES - Reflections on Motivational Science Education for 21st Century Scientific Literacy. Related Paper Symposium presented at the Annual Meeting of the National Association for the Research on Science Teaching, Puerto Rico.
- Irwin, J. (1997). Theories of burning: A case study using a historical perspective. *School Science Review*, *78*(285), 31–37.

- Krajcik, J., & Mamlok-Naaman, R. (alphabetical order). (2006). Using driving questions to motivate and sustain student interest in learning science. In: K. Tobin (Ed.). *Teaching and Learning Science: A Handbook* (317-327). Praeger, Westport, Connecticut, London.
- Mamlok-Naaman, R., Fortus, D., Dershimer, R.C., Krajcik, J., & Marx, R.W. (2005).
 How do I design a cellular phone that is safer to use? In: P. Nentwig and D.
 Waddington (Eds.). *Making it Relevant: Context-based Learning of Science* (215-241). Munster / New York / Munchen / Berlin: Waxmann. Connecticut, London.
- Mamlok-Naaman, R., Ben-Zvi, R., Hofstein, A., Menis, J., & Erduran, S. (2005). Influencing Students' Attitudes towards Science by exposing them to a Historical Approach. *International Journal of Science and Mathematics Education*, 3(3), 485-507.
- Mamlok-Naaman, R. & Barnea, N. (2012). Laboratory activities in Israel. Eurasia Journal of Mathematics, Science & Technology Education, 8(1), 49-57.
- Mamlok-Naaman, R., Eilks, I., Bodner, A., & Hofstein, A. (2018). Professional Development of Chemistry Teachers. Cambridge: RSC Publications.
- Pilot, A., . Bulte, M. W. (2006) Why Do You "Need to Know"? Context-based education, International Journal of Science Education, 28:9, 953-956, DOI: <u>10.1080/09500690600702462</u>

Tarty Estonia

- National Research Council (2013). Next generation science standards: for states, by states, Washington: National Academies Press.
- Osborne, J. F., & Dillon, J. (2008). Science Education in Europe. London: Nuffield Foundation.
- Ruschenpohler, L., & Marcik, S. (2020). Secondary School Students' Chemistry Self-Concepts: Gender, Culture, and the Impact on Learning Behavior. *CERP*, 21, 209-219.
- Shwartz Y., Ben-Zvi R. & Hofstein A. (2006) Chemical literacy: What does this mean to scientists and school teachers? Journal of Chemical Education. 83, 10, p. 1557-1561
- Stuckey, M., Heering, P., Mamlok-Naaman, R., Hofstein, A., & Eilks, I. (2015). The philosophical works of Ludwik Fleck and their potential meaning for teaching and learning science. *Science & Education*, 24(3), 281-298.
- Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.

Thank you ③

