Activated Silicon Carbide-Derived Carbon Electrodes in Supercapacitors with Different Electrolytes

Ester Tee, Indrek Tallo, Thomas Thomberg, Alar Jänes, Enn Lust

Institute of Chemistry, University of Tartu
Ravila 14a, 50411 Tartu, Estonia
estee.tee@ut.ee

Cyclic voltammetry, constant current charge/discharge, electrochemical impedance spectroscopy and constant power discharging methods have been applied to establish the electrochemical characteristics of supercapacitors consisting of micro/mesoporous carbon electrodes, prepared from silicon carbide derived carbon (SiC-CDC) that have been additionally activated with carbon dioxide (CO₂), and different electrolytes. In the first case the electrolyte used was 1 M \((C_2H_5)\text{CH}_3\text{NBF}_4 \) solution in acetonitrile [1] and in the second work 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF₄) [2]. The electrochemical characteristics for supercapacitors (region of ideal polarizability, characteristic time constant, specific series and parallel capacitances) are significantly dependent on the CO₂ activation extent of the SiC-CDC materials. The electrochemical data indicated at least two-times increase in specific capacitance. From impedance spectroscopy the highest capacitance values of 130 F g⁻¹ at 3.0 V [1] and 170 F g⁻¹ at 3.6 V [2] respectively have been established. Most importantly, the activation of SiC-CDC with CO₂ significantly increases the performance (energy density, power density, etc.) of the supercapacitors especially at higher potential scan rates and at higher power loads. Therefore CO₂ activation is a fairly simple and inexpensive method, which significantly improves the electrochemical properties of carbon materials used as supercapacitor electrodes.

References: