Different ways to evaluate robustness

Choosing the parameters

- LC parameters
 - pH
 - Concentration of additives in eluent
 - Organic solvent content in the eluent
 - Column temperature
 - Eluent flow rate
 - Column batch and age
- Sample and sample preparation parameters
 - Analyte extraction time
 - Injection solvent composition
 - Matrix effect
- Mass spectrometry parameters
 - Drying gas temp
 - Nebulizer gas pressure/flow rate
 - Ion source configuration and condition

Choosing the parameters

How much a given method parameter can influence the critical characteristic

and

how likely it is that this parameter will change uncontrollably

One Variable At a Time approach vs Experimental design

- One variable at the time approach
 - Simple
 - Time-consuming
 - Needs a knowledge of critical performance characteristics of the method
- Experimental design
 - Powerful tool
 - Needs a knowledge of critical performance characteristics of the method
 - Requires a knowledge and experience with mathematical statistics

One Variable At a Time approach

- Change parameters one by one in both directions from the nominal (optimal) value. Changes in the parameters should be realistic in the context of normal use of the method
- 2) Do not stop there! Often parameters may be mutually unrelated (uncorrelated), but in some cases this does not hold
- Effects from the change of parameters should be monitored (graphical or statistical analysis)
- 4) Regarding the robustness tests results, if necessary, measures to improve the performance of the method should be taken