# 5. Laplace teisendus ja Z-teisendus

## Brief summary

A basic result from Section 4 is that the response of an LTI system is given by convolution of the input and the impulse response of the system. In this section we present an alternative representation for signals and LTI systems. The Laplace transform is introduced to represent continuous-time signals in the s-domain (s is a complex variable), and the concept of the system function for a continuous-time LTI system is described. Many useful insights into the properties of continuous-time LTI systems, as well as the study of many problems involving LTI systems, can be provided by application of the Laplace transform technique.

We also present the z-transform, which is the discrete-time counterpart of the Laplace transform. The z-transform is introduced to represent discrete-time signals (or sequences) in the z-domain (z is a complex variable), and the concept of the system function for a discrete-time LTI system will be described. The Laplace transform converts integrodifferential equations into algebraic equations. In a similar manner, the z-transform converts difference equations into algebraic equations, thereby simplifying the analysis of discrete-time systems. The properties of the z-transform closely parallel those of the Laplace transform.

## Kokkuvõte

Neljanda osa põhitulemusena selgus, et LNI süsteemi väljundi saab arvutada selle impulsskoste ja sisendi sidumsummana. Viiendas osas tutvustatakse signaalide ja LNI süsteemide ühte võimalikku esitusviisi (teisendustehet). Laplace teisendus esitab suvalist signaali või süsteemi komplekses s-ruumis. Tutvustatakse süsteemi funktsiooni mõistet pidevate LNI süsteemide kirjeldamiseks. Laplace teisenduse teostamise järel on paljusid signaalide ja LNI süsteemide omadusi oluliselt lihtsam näha kui aegesitust uurides. Defineeritakse z-teisendus, mis on Laplace teisenduse analoog diskreetse argumendiga signaalide ja LNI süsteemide jaoks. Z-teisendus esitab diskreetse argumendiga signaale või LNI süsteeme komplekses z-ruumis. Laplace teisenduse abil saab teisendada integraalsed diferentsiaalsed võrrandid algebralisteks võrranditeks ning neid seeläbi oluliselt lihtsustada. Z-teisenduse omadused on Laplace teisenduse omadustega analoogsed.

Video #1 - Laplace transform

Videoloeng slaididega: http://chuck.ut.ee:8080/ess/echo/presentation/4c7bd971-3129-4ef0-a297-0d172dbaee93

Video #2 - Laplace transform cont., z-transform

Videoloeng slaididega: http://chuck.ut.ee:8080/ess/echo/presentation/8e317cfe-0415-4676-81c3-f4f3cef50b1c